Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ι be given.
Let x3 of type ιιι be given.
Let x4 of type ιιι be given.
Let x5 of type ιιο be given.
Let x6 of type ιιι be given.
Let x7 of type ιιι be given.
Let x8 of type ιιο be given.
Assume H0: ∀ x9 . x9x0∀ x10 . x10x0x3 x9 x10 = x6 x9 x10.
Assume H1: ∀ x9 . x9x0∀ x10 . x10x0x4 x9 x10 = x7 x9 x10.
Assume H2: ∀ x9 . x9x0∀ x10 . x10x0iff (x5 x9 x10) (x8 x9 x10).
Apply explicit_Reals_E with x0, x1, x2, x3, x4, x5, explicit_Reals x0 x1 x2 x6 x7 x8.
Assume H3: explicit_Reals x0 x1 x2 x3 x4 x5.
Apply explicit_OrderedField_E with x0, x1, x2, x3, x4, x5, (∀ x9 . x9x0∀ x10 . x10x0lt x0 x1 x2 x3 x4 x5 x1 x9x5 x1 x10∃ x11 . and (x11Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)) (x5 x10 (x4 x11 x9)))(∀ x9 . x9setexp x0 (Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5))∀ x10 . x10setexp x0 (Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5))(∀ x11 . x11Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)and (and (x5 (ap x9 x11) (ap x10 x11)) (x5 (ap x9 x11) (ap x9 (x3 x11 x2)))) (x5 (ap x10 (x3 x11 x2)) (ap x10 x11)))∃ x11 . and (x11x0) (∀ x12 . x12Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)and (x5 (ap x9 x12) x11) (x5 x11 (ap x10 x12))))explicit_Reals x0 x1 x2 x6 x7 x8.
Assume H4: explicit_OrderedField x0 x1 x2 x3 x4 x5.
Apply explicit_Field_E with x0, x1, x2, x3, x4, ..................(∀ x9 . ...∀ x10 . ...(∀ x11 . ...and ... ...)∃ x11 . and (x11x0) (∀ x12 . x12Sep x0 (natOfOrderedField_p x0 x1 x2 x3 x4 x5)and (x5 (ap x9 x12) x11) (x5 x11 (ap x10 x12))))explicit_Reals x0 x1 x2 x6 x7 x8.
...