Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ιο be given.
Assume H0: ∀ x1 . x0 x1∀ x2 . x0 x2x0 (setprod x1 x2).
Assume H1: ∀ x1 . x0 x1∀ x2 . x0 x2x0 (setexp x2 x1).
Let x1 of type ο be given.
Assume H2: ∀ x2 : ι → ι → ι . (∃ x3 x4 : ι → ι → ι . ∃ x5 : ι → ι → ι → ι → ι → ι . ∃ x6 x7 : ι → ι → ι . ∃ x8 : ι → ι → ι → ι → ι . MetaCat_exp_constr_p x0 HomSet (λ x9 . lam_id x9) (λ x9 x10 x11 x12 x13 . lam_comp x9 x12 x13) x2 x3 x4 x5 x6 x7 x8)x1.
Apply H2 with setprod.
Let x2 of type ο be given.
Assume H3: ∀ x3 : ι → ι → ι . (∃ x4 : ι → ι → ι . ∃ x5 : ι → ι → ι → ι → ι → ι . ∃ x6 x7 : ι → ι → ι . ∃ x8 : ι → ι → ι → ι → ι . MetaCat_exp_constr_p x0 HomSet (λ x9 . lam_id x9) (λ x9 x10 x11 x12 x13 . lam_comp x9 x12 x13) setprod x3 x4 x5 x6 x7 x8)x2.
Apply H3 with λ x3 x4 . lam (setprod x3 x4) (λ x5 . ap x5 0).
Let x3 of type ο be given.
Assume H4: ∀ x4 : ι → ι → ι . (∃ x5 : ι → ι → ι → ι → ι → ι . ∃ x6 x7 : ι → ι → ι . ∃ x8 : ι → ι → ι → ι → ι . MetaCat_exp_constr_p x0 HomSet (λ x9 . lam_id x9) (λ x9 x10 x11 x12 x13 . lam_comp x9 x12 x13) setprod (λ x9 x10 . lam (setprod x9 x10) (λ x11 . ap x11 0)) x4 x5 x6 x7 x8)x3.
Apply H4 with λ x4 x5 . lam (setprod x4 x5) (λ x6 . ap x6 1).
Let x4 of type ο be given.
Assume H5: ∀ x5 : ι → ι → ι → ι → ι → ι . (∃ x6 x7 : ι → ι → ι . ∃ x8 : ι → ι → ι → ι → ι . MetaCat_exp_constr_p x0 HomSet (λ x9 . lam_id x9) (λ x9 x10 x11 x12 x13 . lam_comp x9 x12 x13) setprod (λ x9 x10 . lam (setprod x9 x10) (λ x11 . ap x11 0)) (λ x9 x10 . lam (setprod x9 x10) (λ x11 . ap x11 1)) x5 x6 x7 x8)x4.
Apply H5 with λ x5 x6 x7 x8 x9 . lam x7 (λ x10 . lam 2 (λ x11 . If_i (x11 = 0) (ap x8 x10) (ap x9 x10))).
Let x5 of type ο be given.
Assume H6: ∀ x6 : ι → ι → ι . (∃ x7 : ι → ι → ι . ∃ x8 : ι → ι → ι → ι → ι . MetaCat_exp_constr_p x0 HomSet (λ x9 . lam_id x9) (λ x9 x10 x11 x12 x13 . lam_comp x9 x12 x13) setprod (λ x9 x10 . lam (setprod x9 x10) (λ x11 . ap x11 0)) (λ x9 x10 . lam (setprod x9 x10) (λ x11 . ap x11 1)) (λ x9 x10 x11 x12 x13 . lam x11 (λ x14 . lam 2 (λ x15 . If_i (x15 = 0) (ap x12 x14) (ap x13 x14)))) x6 x7 x8)x5.
Apply H6 with λ x6 x7 . setexp x7 x6.
Let x6 of type ο be given.
Assume H7: ∀ x7 : ι → ι → ι . (∃ x8 : ι → ι → ι → ι → ι . MetaCat_exp_constr_p x0 HomSet (λ x9 . lam_id x9) (λ x9 x10 x11 x12 x13 . lam_comp x9 x12 x13) ... ... ... ... ... ... ...)x6.
...