Search for blocks/addresses/...

Proofgold Proof

pf
Apply df_hash__df_word__df_lsw__df_concat__df_s1__df_substr__df_splice__df_reverse__df_reps__df_csh__df_s2__df_s3__df_s4__df_s5__df_s6__df_s7__df_s8__df_trcl with wceq cconcat (cmpt2 (λ x0 x1 . cvv) (λ x0 x1 . cvv) (λ x0 x1 . cmpt (λ x2 . co cc0 (co (cfv (cv x0) chash) (cfv (cv x1) chash) caddc) cfzo) (λ x2 . cif (wcel (cv x2) (co cc0 (cfv (cv x0) chash) cfzo)) (cfv (cv x2) (cv x0)) (cfv (co (cv x2) (cfv (cv x0) chash) cmin) (cv x1))))).
Assume H0: wceq chash (cun (ccom (cres (crdg (cmpt (λ x0 . cvv) (λ x0 . co (cv x0) c1 caddc)) cc0) com) ccrd) (cxp (cdif cvv cfn) (csn cpnf))).
Assume H1: ∀ x0 : ι → ο . wceq (cword x0) (cab (λ x1 . wrex (λ x2 . wf (co cc0 (cv x2) cfzo) x0 (cv x1)) (λ x2 . cn0))).
Assume H2: wceq clsw (cmpt (λ x0 . cvv) (λ x0 . cfv (co (cfv (cv x0) chash) c1 cmin) (cv x0))).
Assume H3: wceq cconcat (cmpt2 (λ x0 x1 . cvv) (λ x0 x1 . cvv) (λ x0 x1 . cmpt (λ x2 . co cc0 (co (cfv (cv x0) chash) (cfv (cv x1) chash) caddc) cfzo) (λ x2 . cif (wcel (cv x2) (co cc0 (cfv (cv x0) chash) cfzo)) (cfv (cv x2) (cv x0)) (cfv (co (cv x2) (cfv (cv x0) chash) cmin) (cv x1))))).
Assume H4: ∀ x0 : ι → ο . wceq (cs1 x0) (csn (cop cc0 (cfv x0 cid))).
Assume H5: wceq csubstr (cmpt2 (λ x0 x1 . cvv) (λ x0 x1 . cxp cz cz) (λ x0 x1 . cif (wss (co (cfv (cv x1) c1st) (cfv (cv x1) c2nd) cfzo) (cdm (cv x0))) (cmpt (λ x2 . co cc0 (co (cfv (cv x1) c2nd) (cfv (cv x1) c1st) cmin) cfzo) (λ x2 . cfv (co (cv x2) (cfv (cv x1) c1st) caddc) (cv x0))) c0)).
Assume H6: wceq csplice (cmpt2 (λ x0 x1 . cvv) (λ x0 x1 . cvv) (λ x0 x1 . co (co (co (cv x0) (cop cc0 (cfv (cfv (cv x1) c1st) c1st)) csubstr) (cfv ... ...) ...) ... ...)).
...