Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ι be given.
Let x3 of type ι be given.
Let x4 of type ι be given.
Let x5 of type ι be given.
Assume H0: SNoCutP x0 x1.
Assume H1: SNoCutP x2 x3.
Assume H2: x4 = SNoCut x0 x1.
Assume H3: x5 = SNoCut x2 x3.
Apply mul_SNoCutP_lem with x0, x1, x2, x3, x4, x5, ∀ x6 : ο . (∀ x7 x8 x9 x10 . (∀ x11 . ...∀ x12 : ο . (∀ x13 . ...∀ x14 . ...............x11 = add_SNo (mul_SNo x13 x5) (add_SNo (mul_SNo x4 x14) ...)x12)x12)(∀ x11 . x11x0∀ x12 . x12x2add_SNo (mul_SNo x11 x5) (add_SNo (mul_SNo x4 x12) (minus_SNo (mul_SNo x11 x12)))x7)(∀ x11 . x11x8∀ x12 : ο . (∀ x13 . x13x1∀ x14 . x14x3SNo x13SNo x14SNoLt x4 x13SNoLt x5 x14x11 = add_SNo (mul_SNo x13 x5) (add_SNo (mul_SNo x4 x14) (minus_SNo (mul_SNo x13 x14)))x12)x12)(∀ x11 . x11x1∀ x12 . x12x3add_SNo (mul_SNo x11 x5) (add_SNo (mul_SNo x4 x12) (minus_SNo (mul_SNo x11 x12)))x8)(∀ x11 . x11x9∀ x12 : ο . (∀ x13 . x13x0∀ x14 . x14x3SNo x13SNo x14SNoLt x13 x4SNoLt x5 x14x11 = add_SNo (mul_SNo x13 x5) (add_SNo (mul_SNo x4 x14) (minus_SNo (mul_SNo x13 x14)))x12)x12)(∀ x11 . x11x0∀ x12 . x12x3add_SNo (mul_SNo x11 x5) (add_SNo (mul_SNo x4 x12) (minus_SNo (mul_SNo x11 x12)))x9)(∀ x11 . x11x10∀ x12 : ο . (∀ x13 . x13x1∀ x14 . x14x2SNo x13SNo x14SNoLt x4 x13SNoLt x14 x5x11 = add_SNo (mul_SNo x13 x5) (add_SNo (mul_SNo x4 x14) (minus_SNo (mul_SNo x13 x14)))x12)x12)(∀ x11 . x11x1∀ x12 . x12x2add_SNo (mul_SNo x11 x5) (add_SNo (mul_SNo x4 x12) (minus_SNo (mul_SNo x11 x12)))x10)SNoCutP (binunion x7 x8) (binunion x9 x10)mul_SNo x4 x5 = SNoCut (binunion x7 x8) (binunion x9 x10)x6)x6 leaving 5 subgoals.
...
...
...
...
...