Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ι be given.
Let x3 of type ι → ι → ι be given.
Let x4 of type ι → ι → ι be given.
Let x5 of type ι → ι → ο be given.
Let x6 of type ι → ι → ι be given.
Assume H1: ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ x3 x7 (x3 x8 x9) = x3 (x3 x7 x8) x9.
Assume H2: ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ x3 x7 x8 = x3 x8 x7.
Assume H3: x1 ∈ x0.
Assume H4: ∀ x7 . x7 ∈ x0 ⟶ x3 x1 x7 = x7.
Assume H5: ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ x4 x7 x8 ∈ x0.
Assume H6: ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ x4 x7 x8 = x4 x8 x7.
Assume H7: x2 ∈ x0.
Assume H8: x2 = x1 ⟶ ∀ x7 : ο . x7.
Assume H9: ∀ x7 . x7 ∈ x0 ⟶ x4 x2 x7 = x7.
Assume H11:
∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ x6 x7 x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6.
Assume H12:
∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ (λ x9 . prim0 (λ x10 . and (x10 ∈ x0) (∃ x11 . and (x11 ∈ x0) (x9 = x6 x10 x11)))) (x6 x7 x8) = x7.
Assume H13:
∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ (λ x9 . prim0 (λ x10 . and (x10 ∈ x0) (x9 = x6 ((λ x11 . prim0 (λ x12 . and (x12 ∈ x0) (∃ x13 . and (x13 ∈ x0) (x11 = x6 x12 x13)))) x9) x10))) (x6 x7 x8) = x8.
Assume H14:
∀ x7 . x7 ∈ ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6 ⟶ (λ x8 . prim0 (λ x9 . and (x9 ∈ x0) (∃ x10 . and (x10 ∈ x0) (x8 = x6 x9 x10)))) x7 ∈ x0.
Assume H15:
∀ x7 . ... ⟶ (λ x8 . prim0 (λ x9 . and (x9 ∈ x0) (x8 = x6 ((λ x10 . prim0 (λ x11 . and (x11 ∈ x0) (∃ x12 . and (x12 ∈ x0) (x10 = x6 x11 x12)))) x8) x9))) x7 ∈ x0.