Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type (ιο) → ο be given.
Let x2 of type ιιι be given.
Let x3 of type ιι be given.
Assume H0: 0df03.. (21805.. x0 x1 x2 x3).
Apply H0 with λ x4 . x4 = 21805.. x0 x1 x2 x3∀ x5 . prim1 x5 x0prim1 (x3 x5) x0 leaving 2 subgoals.
Let x4 of type ι be given.
Let x5 of type (ιο) → ο be given.
Let x6 of type ιιι be given.
Assume H1: ∀ x7 . prim1 x7 x4∀ x8 . prim1 x8 x4prim1 (x6 x7 x8) x4.
Let x7 of type ιι be given.
Assume H2: ∀ x8 . prim1 x8 x4prim1 (x7 x8) x4.
Assume H3: 21805.. x4 x5 x6 x7 = 21805.. x0 x1 x2 x3.
Apply unknownprop_5e5d3cb4769cdc436f8eac4ee78f2f9021e2f66a5843f4c78ccd15ec64b7a40c with x4, x0, x5, x1, x6, x2, x7, x3, ∀ x8 . prim1 x8 x0prim1 (x3 x8) x0 leaving 2 subgoals.
The subproof is completed by applying H3.
Assume H4: and (and (x4 = x0) (∀ x8 : ι → ο . (∀ x9 . x8 x9prim1 x9 x4)x5 x8 = x1 x8)) (∀ x8 . prim1 x8 x4∀ x9 . prim1 x9 x4x6 x8 x9 = x2 x8 x9).
Apply H4 with (∀ x8 . prim1 x8 x4x7 x8 = x3 x8)∀ x8 . prim1 x8 x0prim1 (x3 x8) x0.
Assume H5: and (x4 = x0) (∀ x8 : ι → ο . (∀ x9 . x8 x9prim1 x9 x4)x5 x8 = x1 x8).
Apply H5 with (∀ x8 . prim1 x8 x4∀ x9 . prim1 x9 x4x6 x8 x9 = x2 x8 x9)(∀ x8 . prim1 x8 x4x7 x8 = x3 x8)∀ x8 . prim1 x8 x0prim1 (x3 x8) x0.
Assume H6: x4 = x0.
Assume H7: ∀ x8 : ι → ο . (∀ x9 . x8 x9prim1 x9 x4)x5 x8 = x1 x8.
Assume H8: ∀ x8 . prim1 x8 x4∀ x9 . prim1 x9 x4x6 x8 x9 = x2 x8 x9.
Assume H9: ∀ x8 . prim1 x8 x4x7 x8 = x3 x8.
Apply H6 with λ x8 x9 . ∀ x10 . prim1 x10 x8prim1 (x3 x10) x8.
Let x8 of type ι be given.
Assume H10: prim1 x8 x4.
Apply H9 with x8, λ x9 x10 . prim1 x9 x4 leaving 2 subgoals.
The subproof is completed by applying H10.
Apply H2 with x8.
The subproof is completed by applying H10.
Let x4 of type ιιο be given.
Assume H1: x4 (21805.. x0 x1 x2 x3) (21805.. x0 x1 x2 x3).
The subproof is completed by applying H1.