Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ι be given.
Let x3 of type ι → ι → ι be given.
Let x4 of type ι → ι → ι be given.
Let x5 of type ι → ι → ο be given.
Let x6 of type ι → ι → ι be given.
Assume H0:
∀ x7 . prim1 x7 x0 ⟶ ∀ x8 . prim1 x8 x0 ⟶ prim1 (x3 x7 x8) x0.
Assume H2:
∀ x7 . prim1 x7 x0 ⟶ ∀ x8 . prim1 x8 x0 ⟶ prim1 (x4 x7 x8) x0.
Assume H3:
∀ x7 . prim1 x7 x0 ⟶ ∀ x8 . prim1 x8 x0 ⟶ ∀ x9 . prim1 x9 x0 ⟶ x4 x7 (x4 x8 x9) = x4 (x4 x7 x8) x9.
Assume H4:
∀ x7 . prim1 x7 x0 ⟶ ∀ x8 . prim1 x8 x0 ⟶ x4 x7 x8 = x4 x8 x7.
Assume H6:
∀ x7 . prim1 x7 x0 ⟶ (x7 = x1 ⟶ ∀ x8 : ο . x8) ⟶ ∃ x8 . and (prim1 x8 x0) (x4 x7 x8 = x2).
Assume H7:
∀ x7 . prim1 x7 x0 ⟶ ∀ x8 . prim1 x8 x0 ⟶ ∀ x9 . prim1 x9 x0 ⟶ x4 x7 (x3 x8 x9) = x3 (x4 x7 x8) (x4 x7 x9).
Assume H9:
∀ x7 . prim1 x7 x0 ⟶ ∀ x8 . prim1 x8 x0 ⟶ ∀ x9 . prim1 x9 x0 ⟶ x4 (x3 x7 x8) x9 = x3 (x4 x7 x9) (x4 x8 x9).
Assume H13:
∀ x7 . ... ⟶ prim1 ((λ x8 . prim0 (λ x9 . and (prim1 ... ...) ...)) ...) ....