Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ι be given.
Let x3 of type ιιι be given.
Let x4 of type ιιι be given.
Let x5 of type ιιο be given.
Let x6 of type ιιι be given.
Assume H0: ∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0prim1 (x3 x7 x8) x0.
Assume H1: prim1 x1 x0.
Assume H2: ∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0prim1 (x4 x7 x8) x0.
Assume H3: ∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0∀ x9 . prim1 x9 x0x4 x7 (x4 x8 x9) = x4 (x4 x7 x8) x9.
Assume H4: ∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0x4 x7 x8 = x4 x8 x7.
Assume H5: prim1 x2 x0.
Assume H6: ∀ x7 . prim1 x7 x0(x7 = x1∀ x8 : ο . x8)∃ x8 . and (prim1 x8 x0) (x4 x7 x8 = x2).
Assume H7: ∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0∀ x9 . prim1 x9 x0x4 x7 (x3 x8 x9) = x3 (x4 x7 x8) (x4 x7 x9).
Assume H8: ∀ x7 . prim1 x7 x0prim1 (explicit_Field_minus x0 x1 x2 x3 x4 x7) x0.
Assume H9: ∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0∀ x9 . prim1 x9 x0x4 (x3 x7 x8) x9 = x3 (x4 x7 x9) (x4 x8 x9).
Assume H10: ∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0explicit_Field_minus x0 x1 x2 x3 x4 (x3 x7 x8) = x3 (explicit_Field_minus x0 x1 x2 x3 x4 x7) (explicit_Field_minus x0 x1 x2 x3 x4 x8).
Assume H11: ∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0x4 (explicit_Field_minus x0 x1 x2 x3 x4 x7) x8 = explicit_Field_minus x0 x1 x2 x3 x4 (x4 x7 x8).
Assume H12: ∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0x4 x7 (explicit_Field_minus x0 x1 x2 x3 x4 x8) = explicit_Field_minus x0 x1 x2 x3 x4 (x4 x7 x8).
Assume H13: ∀ x7 . ...prim1 ((λ x8 . prim0 (λ x9 . and (prim1 ... ...) ...)) ...) ....
...