Search for blocks/addresses/...
Proofgold Proof
pf
Let x0 of type
ι
be given.
Assume H0:
RealsStruct
x0
.
Apply set_ext with
RealsStruct_Z
x0
,
{x1 ∈
field0
x0
|
or
(
or
(
explicit_Field_minus
(
field0
x0
)
(
field4
x0
)
(
RealsStruct_one
x0
)
(
field1b
x0
)
(
field2b
x0
)
x1
∈
RealsStruct_Npos
x0
)
(
x1
=
field4
x0
)
)
(
x1
∈
RealsStruct_Npos
x0
)
}
leaving 2 subgoals.
Let x1 of type
ι
be given.
Assume H1:
x1
∈
RealsStruct_Z
x0
.
Apply SepE with
field0
x0
,
λ x2 .
or
(
or
(
Field_minus
(
Field_of_RealsStruct
x0
)
x2
∈
RealsStruct_Npos
x0
)
(
x2
=
field4
x0
)
)
(
x2
∈
RealsStruct_Npos
x0
)
,
x1
,
x1
∈
{x2 ∈
field0
x0
|
or
(
or
(
explicit_Field_minus
(
field0
x0
)
(
field4
x0
)
(
RealsStruct_one
x0
)
(
field1b
x0
)
(
field2b
x0
)
x2
∈
RealsStruct_Npos
x0
)
(
x2
=
field4
x0
)
)
(
x2
∈
RealsStruct_Npos
x0
)
}
leaving 2 subgoals.
The subproof is completed by applying H1.
Assume H2:
x1
∈
field0
x0
.
Assume H3:
or
(
or
(
Field_minus
(
Field_of_RealsStruct
x0
)
x1
∈
RealsStruct_Npos
x0
)
(
x1
=
field4
x0
)
)
(
x1
∈
RealsStruct_Npos
x0
)
.
Apply SepI with
field0
x0
,
λ x2 .
or
(
or
(
explicit_Field_minus
(
field0
x0
)
(
field4
x0
)
(
RealsStruct_one
x0
)
(
field1b
x0
)
(
field2b
x0
)
x2
∈
RealsStruct_Npos
x0
)
(
x2
=
field4
x0
)
)
(
x2
∈
RealsStruct_Npos
x0
)
,
x1
leaving 2 subgoals.
The subproof is completed by applying H2.
Apply H3 with
or
(
or
(
explicit_Field_minus
(
field0
x0
)
(
field4
x0
)
(
RealsStruct_one
x0
)
(
field1b
x0
)
(
field2b
x0
)
x1
∈
RealsStruct_Npos
x0
)
(
x1
=
field4
x0
)
)
(
x1
∈
RealsStruct_Npos
x0
)
leaving 2 subgoals.
Assume H4:
or
(
Field_minus
(
Field_of_RealsStruct
x0
)
x1
∈
RealsStruct_Npos
x0
)
(
x1
=
field4
x0
)
.
Apply H4 with
or
(
or
(
explicit_Field_minus
(
field0
x0
)
(
field4
x0
)
(
RealsStruct_one
x0
)
(
field1b
x0
)
(
field2b
x0
)
x1
∈
RealsStruct_Npos
x0
)
(
x1
=
field4
x0
)
)
(
x1
∈
RealsStruct_Npos
x0
)
leaving 2 subgoals.
Assume H5:
Field_minus
(
Field_of_RealsStruct
x0
)
x1
∈
RealsStruct_Npos
x0
.
Apply orIL with
or
(
explicit_Field_minus
(
field0
x0
)
(
field4
x0
)
(
RealsStruct_one
x0
)
(
field1b
x0
)
(
field2b
x0
)
x1
∈
RealsStruct_Npos
x0
)
(
x1
=
field4
x0
)
,
x1
∈
RealsStruct_Npos
x0
.
Apply orIL with
explicit_Field_minus
(
field0
x0
)
(
field4
x0
)
(
RealsStruct_one
x0
)
(
field1b
x0
)
(
field2b
x0
)
x1
∈
RealsStruct_Npos
x0
,
x1
=
field4
x0
.
Apply RealsStruct_minus_eq2 with
x0
,
x1
,
λ x2 x3 .
x2
∈
RealsStruct_Npos
x0
leaving 3 subgoals.
The subproof is completed by applying H0.
The subproof is completed by applying H2.
The subproof is completed by applying H5.
Assume H5:
x1
=
field4
x0
.
Apply orIL with
or
(
explicit_Field_minus
(
field0
x0
)
(
field4
...
)
...
...
...
...
∈
...
)
...
,
...
.
...
...
...
■