Apply unknownprop_48f8d4859b6b78ba3bbfab79f28064a8eb2fee8b3008bbf7332b70f58b78e189 with
λ x0 x1 : ι → ι . ∀ x2 x3 . prim1 (x0 x3) x2 ⟶ prim1 x3 (22ca9.. x2).
Let x0 of type ι be given.
Let x1 of type ι be given.
Apply unknownprop_220466dabb9c90c9b087796465f1368ac3c1e9d1ef55643ebed4c27316fb8803 with
x1,
λ x2 x3 . prim1 x2 (a4c2a.. x0 (λ x4 . ∃ x5 . 09364.. x5 = x4) (λ x4 . 158d3.. x4)).
Apply unknownprop_9c424e90871cd9e3a05e6a3be208792c52ad17517e2db8ef40187e46ac0e9a6e with
x0,
λ x2 . ∃ x3 . 09364.. x3 = x2,
158d3..,
09364.. x1 leaving 2 subgoals.
The subproof is completed by applying H0.
Let x2 of type ο be given.
Apply H1 with
x1.
Let x3 of type ι → ι → ο be given.
The subproof is completed by applying H2.