Search for blocks/addresses/...
Proofgold Proof
pf
Let x0 of type
ι
be given.
Assume H0:
Field
x0
.
Apply explicit_Field_E with
field0
x0
,
field3
x0
,
field4
x0
,
field1b
x0
,
field2b
x0
,
∀ x1 .
x1
∈
field0
x0
⟶
field1b
x0
(
field3
x0
)
x1
=
x1
leaving 2 subgoals.
Assume H1:
explicit_Field
(
field0
x0
)
(
field3
x0
)
(
field4
x0
)
(
field1b
x0
)
(
field2b
x0
)
.
Assume H2:
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
field1b
x0
x1
x2
∈
field0
x0
.
Assume H3:
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
∀ x3 .
x3
∈
field0
x0
⟶
field1b
x0
x1
(
field1b
x0
x2
x3
)
=
field1b
x0
(
field1b
x0
x1
x2
)
x3
.
Assume H4:
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
field1b
x0
x1
x2
=
field1b
x0
x2
x1
.
Assume H5:
field3
x0
∈
field0
x0
.
Assume H6:
∀ x1 .
x1
∈
field0
x0
⟶
field1b
x0
(
field3
x0
)
x1
=
x1
.
Assume H7:
∀ x1 .
x1
∈
field0
x0
⟶
∃ x2 .
and
(
x2
∈
field0
x0
)
(
field1b
x0
x1
x2
=
field3
x0
)
.
Assume H8:
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
field2b
x0
x1
x2
∈
field0
x0
.
Assume H9:
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
∀ x3 .
x3
∈
field0
x0
⟶
field2b
x0
x1
(
field2b
x0
x2
x3
)
=
field2b
x0
(
field2b
x0
x1
x2
)
x3
.
Assume H10:
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
field2b
x0
x1
x2
=
field2b
x0
x2
x1
.
Assume H11:
field4
x0
∈
field0
x0
.
Assume H12:
field4
x0
=
field3
x0
⟶
∀ x1 : ο .
x1
.
Assume H13:
∀ x1 .
x1
∈
field0
x0
⟶
field2b
x0
(
field4
x0
)
x1
=
x1
.
Assume H14:
∀ x1 .
x1
∈
field0
x0
⟶
(
x1
=
field3
x0
⟶
∀ x2 : ο .
x2
)
⟶
∃ x2 .
and
(
x2
∈
field0
x0
)
(
field2b
x0
x1
x2
=
field4
x0
)
.
Assume H15:
∀ x1 .
...
⟶
∀ x2 .
...
⟶
∀ x3 .
...
⟶
field2b
x0
x1
(
field1b
x0
x2
x3
)
=
field1b
x0
(
field2b
...
...
...
)
...
.
...
...
■