Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ι be given.
Let x3 of type ιιι be given.
Let x4 of type ιιι be given.
Let x5 of type ι be given.
Let x6 of type ι be given.
Let x7 of type ι be given.
Let x8 of type ιιι be given.
Let x9 of type ιιι be given.
Let x10 of type ιι be given.
Apply explicit_Field_E with x0, x1, x2, x3, x4, bij x0 x5 x10x10 x1 = x6x10 x2 = x7(∀ x11 . prim1 x11 x0∀ x12 . prim1 x12 x0x10 (x3 x11 x12) = x8 (x10 x11) (x10 x12))(∀ x11 . prim1 x11 x0∀ x12 . prim1 x12 x0x10 (x4 x11 x12) = x9 (x10 x11) (x10 x12))explicit_Field x5 x6 x7 x8 x9.
Assume H0: explicit_Field x0 x1 x2 x3 x4.
Assume H1: ∀ x11 . prim1 x11 x0∀ x12 . prim1 x12 x0prim1 (x3 x11 x12) x0.
Assume H2: ∀ x11 . prim1 x11 x0∀ x12 . prim1 x12 x0∀ x13 . prim1 x13 x0x3 x11 (x3 x12 x13) = x3 (x3 x11 x12) x13.
Assume H3: ∀ x11 . prim1 x11 x0∀ x12 . prim1 x12 x0x3 x11 x12 = x3 x12 x11.
Assume H4: prim1 x1 x0.
Assume H5: ∀ x11 . prim1 x11 x0x3 x1 x11 = x11.
Assume H6: ∀ x11 . prim1 x11 x0∃ x12 . and (prim1 x12 x0) (x3 x11 x12 = x1).
Assume H7: ∀ x11 . prim1 x11 x0∀ x12 . prim1 x12 x0prim1 (x4 x11 x12) x0.
Assume H8: ∀ x11 . prim1 x11 x0∀ x12 . prim1 x12 x0∀ x13 . prim1 x13 x0x4 x11 (x4 x12 x13) = x4 (x4 x11 x12) x13.
Assume H9: ∀ x11 . prim1 x11 x0∀ x12 . prim1 x12 x0x4 x11 x12 = x4 x12 x11.
Assume H10: prim1 x2 x0.
Assume H11: x2 = x1∀ x11 : ο . x11.
Assume H12: ∀ x11 . prim1 x11 x0x4 x2 x11 = x11.
Assume H13: ∀ x11 . prim1 x11 x0(x11 = x1∀ x12 : ο . x12)∃ x12 . and (prim1 x12 x0) (x4 x11 x12 = x2).
Assume H14: ∀ x11 . ...∀ x12 . ...∀ x13 . prim1 x13 x0x4 x11 (x3 x12 x13) = x3 (x4 x11 x12) (x4 x11 x13).
...