Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Assume H0: x0setexp (SNoS_ omega) omega.
Let x1 of type ι be given.
Assume H1: x1setexp (SNoS_ omega) omega.
Assume H2: ∀ x2 . x2omega∀ x3 . x3omegaSNoLt (ap x0 x2) (ap x1 x3).
Let x2 of type ο be given.
Assume H3: SNoCutP {ap x0 x3|x3 ∈ omega} {ap x1 x3|x3 ∈ omega}SNo (SNoCut {ap x0 x3|x3 ∈ omega} {ap x1 x3|x3 ∈ omega})SNoLev (SNoCut {ap x0 x3|x3 ∈ omega} {ap x1 x3|x3 ∈ omega})ordsucc omegaSNoCut {ap x0 x3|x3 ∈ omega} {ap x1 x3|x3 ∈ omega}SNoS_ (ordsucc omega)(∀ x3 . x3omegaSNoLt (ap x0 x3) (SNoCut {ap x0 x4|x4 ∈ omega} {ap x1 x4|x4 ∈ omega}))(∀ x3 . x3omegaSNoLt (SNoCut {ap x0 x4|x4 ∈ omega} {ap x1 x4|x4 ∈ omega}) (ap x1 x3))x2.
Claim L4: ...
...
Apply SNoCutP_SNoCut_impred with {ap x0 x3|x3 ∈ omega}, {ap x1 x3|x3 ∈ omega}, x2 leaving 2 subgoals.
The subproof is completed by applying L4.
Assume H5: SNo (SNoCut {ap x0 x3|x3 ∈ omega} {ap x1 x3|x3 ∈ omega}).
Assume H6: SNoLev (SNoCut {ap x0 x3|x3 ∈ omega} {ap x1 x3|x3 ∈ omega})ordsucc (binunion (famunion {ap x0 x3|x3 ∈ omega} (λ x3 . ordsucc (SNoLev x3))) (famunion {ap x1 x3|x3 ∈ omega} (λ x3 . ordsucc (SNoLev x3)))).
Assume H7: ∀ x3 . x3{ap x0 x4|x4 ∈ omega}SNoLt x3 (SNoCut {ap x0 x4|x4 ∈ omega} {ap x1 x4|x4 ∈ omega}).
Assume H8: ∀ x3 . x3{ap x1 x4|x4 ∈ omega}SNoLt (SNoCut {ap x0 x4|x4 ∈ omega} {ap x1 x4|x4 ∈ omega}) x3.
Assume H9: ∀ x3 . ......(∀ x4 . x4{...|x5 ∈ omega}SNoLt x3 x4)and (SNoLev (SNoCut {ap x0 x4|x4 ∈ omega} {ap x1 x4|x4 ∈ omega})SNoLev x3) (SNoEq_ (SNoLev (SNoCut {ap x0 x4|x4 ∈ omega} {ap x1 x4|x4 ∈ omega})) (SNoCut {ap x0 x4|x4 ∈ omega} {ap x1 x4|x4 ∈ omega}) x3).
...