Search for blocks/addresses/...

Proofgold Proof

pf
Apply SNoLev_ind2 with λ x0 x1 . mul_SNo (minus_SNo x0) x1 = minus_SNo (mul_SNo x0 x1).
Let x0 of type ι be given.
Let x1 of type ι be given.
Assume H0: SNo x0.
Assume H1: SNo x1.
Assume H2: ∀ x2 . x2SNoS_ (SNoLev x0)mul_SNo (minus_SNo x2) x1 = minus_SNo (mul_SNo x2 x1).
Assume H3: ∀ x2 . x2SNoS_ (SNoLev x1)mul_SNo (minus_SNo x0) x2 = minus_SNo (mul_SNo x0 x2).
Assume H4: ∀ x2 . x2SNoS_ (SNoLev x0)∀ x3 . x3SNoS_ (SNoLev x1)mul_SNo (minus_SNo x2) x3 = minus_SNo (mul_SNo x2 x3).
Claim L5: ...
...
Apply mul_SNo_eq_3 with x0, x1, mul_SNo (minus_SNo x0) x1 = minus_SNo (mul_SNo x0 x1) leaving 3 subgoals.
The subproof is completed by applying H0.
The subproof is completed by applying H1.
Let x2 of type ι be given.
Let x3 of type ι be given.
Assume H6: SNoCutP x2 x3.
Assume H7: ∀ x4 . x4x2∀ x5 : ο . (∀ x6 . x6SNoL x0∀ x7 . x7SNoL x1x4 = add_SNo (mul_SNo x6 x1) (add_SNo (mul_SNo x0 x7) (minus_SNo (mul_SNo x6 x7)))x5)(∀ x6 . x6SNoR x0∀ x7 . x7SNoR x1x4 = add_SNo (mul_SNo x6 x1) (add_SNo (mul_SNo x0 x7) (minus_SNo (mul_SNo x6 x7)))x5)x5.
Assume H8: ∀ x4 . x4SNoL x0∀ x5 . x5SNoL x1add_SNo (mul_SNo x4 x1) (add_SNo (mul_SNo x0 x5) (minus_SNo (mul_SNo x4 x5)))x2.
Assume H9: ∀ x4 . x4SNoR x0∀ x5 . x5SNoR x1add_SNo (mul_SNo x4 x1) (add_SNo (mul_SNo x0 x5) (minus_SNo (mul_SNo x4 x5)))x2.
Assume H10: ∀ x4 . x4x3∀ x5 : ο . (∀ x6 . x6SNoL x0∀ x7 . x7SNoR x1x4 = add_SNo (mul_SNo x6 x1) (add_SNo (mul_SNo x0 x7) (minus_SNo (mul_SNo x6 x7)))x5)(∀ x6 . x6SNoR x0∀ x7 . x7SNoL x1x4 = add_SNo (mul_SNo x6 x1) (add_SNo (mul_SNo x0 x7) (minus_SNo (mul_SNo x6 x7)))x5)x5.
Assume H11: ∀ x4 . ...∀ x5 . x5SNoR x1add_SNo (mul_SNo x4 x1) (add_SNo (mul_SNo x0 x5) (minus_SNo (mul_SNo x4 x5)))x3.
...