Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ι be given.
Let x3 of type ι be given.
Let x4 of type ι be given.
Let x5 of type ι be given.
Let x6 of type ι be given.
Apply unknownprop_b456609235d152f08bccfce314d541d7c44f3716137c00b0ce21cf467ba83d17 with 4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))))), λ x7 . If_i (x7 = 4a7ef..) x0 (If_i (x7 = 4ae4a.. 4a7ef..) x1 (If_i (x7 = 4ae4a.. (4ae4a.. 4a7ef..)) x2 (If_i (x7 = 4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) x3 (If_i (x7 = 4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) x4 (If_i (x7 = 4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) x5 x6))))), 4ae4a.. (4ae4a.. 4a7ef..), λ x7 x8 . x8 = x2 leaving 2 subgoals.
The subproof is completed by applying unknownprop_bcc68e14c852aec011dc79b8ee401d729519c729ef73436787d031f53d57be8a.
Apply If_i_0 with 4ae4a.. (4ae4a.. 4a7ef..) = 4a7ef.., x0, If_i (4ae4a.. (4ae4a.. 4a7ef..) = 4ae4a.. 4a7ef..) x1 (If_i (4ae4a.. (4ae4a.. 4a7ef..) = 4ae4a.. (4ae4a.. 4a7ef..)) x2 (If_i (4ae4a.. (4ae4a.. 4a7ef..) = 4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) x3 (If_i (4ae4a.. (4ae4a.. 4a7ef..) = 4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) x4 (If_i (4ae4a.. (4ae4a.. 4a7ef..) = 4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) x5 x6)))), λ x7 x8 . x8 = x2 leaving 2 subgoals.
The subproof is completed by applying unknownprop_38b5b92bfd131ef0428a8ee212f746419349b56c1e9077ab24b3c25647caace1.
Apply If_i_0 with 4ae4a.. (4ae4a.. 4a7ef..) = 4ae4a.. 4a7ef.., x1, If_i (4ae4a.. (4ae4a.. 4a7ef..) = 4ae4a.. (4ae4a.. 4a7ef..)) x2 (If_i (4ae4a.. (4ae4a.. 4a7ef..) = 4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) x3 (If_i (4ae4a.. (4ae4a.. 4a7ef..) = 4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) x4 (If_i (4ae4a.. (4ae4a.. 4a7ef..) = 4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) x5 x6))), λ x7 x8 . x8 = x2 leaving 2 subgoals.
The subproof is completed by applying unknownprop_e0e602efce8c3fbbb791d74669e968feb76e9d28b29f3878aea98e1fe1efe584.
Apply If_i_1 with 4ae4a.. (4ae4a.. 4a7ef..) = 4ae4a.. (4ae4a.. 4a7ef..), x2, If_i (4ae4a.. (4ae4a.. 4a7ef..) = 4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) x3 (If_i (4ae4a.. (4ae4a.. 4a7ef..) = 4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) x4 (If_i (4ae4a.. (4ae4a.. 4a7ef..) = 4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) x5 x6)).
Let x7 of type ιιο be given.
Assume H0: x7 (4ae4a.. (4ae4a.. 4a7ef..)) (4ae4a.. (4ae4a.. 4a7ef..)).
The subproof is completed by applying H0.