Let x0 of type ι → ο be given.
Let x1 of type ι → ο be given.
Let x2 of type ι be given.
Let x3 of type ι be given.
Let x4 of type ι be given.
Let x5 of type ι be given.
Let x6 of type ι be given.
Let x7 of type ι be given.
Assume H0: ∀ x8 : ι → ο . x8 x2 ⟶ x8 x3 ⟶ x8 x4 ⟶ x8 x5 ⟶ x8 x6 ⟶ x8 x7 ⟶ ∀ x9 . x0 x9 ⟶ x8 x9.
Assume H1: ∀ x8 : ι → ο . x8 x2 ⟶ x8 x3 ⟶ x8 x4 ⟶ x8 x5 ⟶ ∀ x9 . x1 x9 ⟶ x8 x9.
Assume H2: x0 x2.
Assume H3: x0 x3.
Assume H4: x0 x4.
Assume H5: x0 x5.
Assume H6: x1 x2.
Assume H7: x1 x3.
Assume H8: x1 x4.
Assume H9: x1 x5.
Assume H10: x2 = x3 ⟶ ∀ x8 : ο . x8.
Assume H11: x2 = x4 ⟶ ∀ x8 : ο . x8.
Assume H12: x2 = x5 ⟶ ∀ x8 : ο . x8.
Assume H13: x2 = x6 ⟶ ∀ x8 : ο . x8.
Assume H14: x2 = x7 ⟶ ∀ x8 : ο . x8.
Let x8 of type ι → ι → ι → ι → ο be given.
Assume H15:
∀ x9 . x0 x9 ⟶ ∀ x10 . x0 x10 ⟶ not (x8 x9 x3 x10 x2).
Assume H16:
∀ x9 . x0 x9 ⟶ ∀ x10 . x0 x10 ⟶ not (x8 x9 x4 x10 x2).
Assume H17:
∀ x9 . x0 x9 ⟶ ∀ x10 . x0 x10 ⟶ not (x8 x9 x5 x10 x2).
Assume H18:
∀ x9 . x0 x9 ⟶ ∀ x10 . x0 x10 ⟶ not (x8 x9 x6 x10 x2).
Assume H19:
∀ x9 . x0 x9 ⟶ ∀ x10 . x0 x10 ⟶ not (x8 x9 x7 x10 x2).
Assume H20:
∀ x9 . x0 x9 ⟶ ∀ x10 . x0 x10 ⟶ not (x8 x9 x6 x10 x3).
Assume H21:
∀ x9 . x0 x9 ⟶ ∀ x10 . x0 x10 ⟶ not (x8 x9 x7 x10 x3).
Assume H22:
∀ x9 . x0 x9 ⟶ ∀ x10 . x0 x10 ⟶ not (x8 x9 x6 x10 x4).
Assume H23:
∀ x9 . x0 x9 ⟶ ∀ x10 . x0 x10 ⟶ not (x8 x9 x7 x10 x4).
Assume H24:
∀ x9 . x0 x9 ⟶ ∀ x10 . x0 x10 ⟶ not (x8 x9 x6 x10 x5).
Assume H25:
∀ x9 . x0 x9 ⟶ ∀ x10 . x0 x10 ⟶ not (x8 x9 x7 x10 x5).
Assume H26:
∀ x9 . x0 x9 ⟶ ∀ x10 . x0 x10 ⟶ not (x8 x9 x7 x10 x6).
Let x9 of type ι → ι → ι → ι → ο be given.
Assume H27: ∀ x10 x11 x12 x13 . ... ⟶ ... ⟶ ... ⟶ ... ⟶ ∀ x14 : ο . (x8 x10 ... ... ... ⟶ x14) ⟶ (x9 x10 x11 x12 x13 ⟶ x14) ⟶ (x8 x12 x13 x10 x11 ⟶ x14) ⟶ x14.