Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ιιι be given.
Let x3 of type ιιι be given.
Let x4 of type ιιι be given.
Let x5 of type ιιι be given.
Let x6 of type ιιο be given.
Let x7 of type ιιο be given.
Let x8 of type ι be given.
Let x9 of type ι be given.
Let x10 of type ι be given.
Let x11 of type ι be given.
Let x12 of type ι be given.
Claim L0: ...
...
Claim L1: ...
...
set y13 to be ...
set y14 to be ...
Claim L2: ∀ x15 : ο → ο . x15 y14x15 y13
Let x15 of type οο be given.
Assume H2: x15 ((λ x16 . λ x17 x18 : ι → ι → ι . λ x19 : ι → ι → ο . λ x20 x21 x22 . λ x23 x24 : ι → ι → ι . λ x25 : ι → ι → ο . λ x26 x27 . and (and (and (and (and (y14setexp x22 x16) (∀ x28 . x28x16∀ x29 . x29x16ap y14 (x17 x28 x29) = x23 (ap y14 x28) (ap y14 x29))) (∀ x28 . x28x16∀ x29 . x29x16ap y14 (x18 x28 x29) = x24 (ap y14 x28) (ap y14 x29))) (∀ x28 . x28x16∀ x29 . x29x16x19 x28 x29x25 (ap y14 x28) (ap y14 x29))) (ap y14 x20 = x26)) (ap y14 x21 = x27)) x2 x4 x5 x8 x10 x11 x3 x6 x7 x9 x12 y13).
Apply unpack_b_b_r_e_e_o_eq with λ x16 . λ x17 x18 : ι → ι → ι . λ x19 : ι → ι → ο . λ x20 x21 . unpack_b_b_r_e_e_o (pack_b_b_r_e_e x3 x6 x7 x9 x12 y13) (λ x22 . λ x23 x24 : ι → ι → ι . λ x25 : ι → ι → ο . λ x26 x27 . (λ x28 . λ x29 x30 : ι → ι → ι . λ x31 : ι → ι → ο . λ x32 x33 x34 . λ x35 x36 : ι → ι → ι . λ x37 : ι → ι → ο . λ x38 x39 . and (and (and (and (and (y14setexp x34 x28) (∀ x40 . x40x28∀ x41 . x41x28ap y14 (x29 x40 x41) = x35 (ap y14 x40) (ap y14 x41))) (∀ x40 . x40x28∀ x41 . x41x28ap y14 (x30 x40 x41) = x36 (ap y14 x40) (ap y14 x41))) (∀ x40 . x40x28∀ x41 . x41x28x31 x40 x41x37 (ap y14 x40) (ap y14 x41))) (ap y14 x32 = x38)) (ap y14 x33 = x39)) x16 x17 x18 x19 x20 x21 x22 x23 x24 x25 x26 x27), x2, x4, x5, x8, x10, x11, λ x16 : ο . x15 leaving 2 subgoals.
The subproof is completed by applying L1.
Apply unpack_b_b_r_e_e_o_eq with (λ x16 . λ x17 x18 : ι → ι → ι . λ x19 : ι → ι → ο . λ x20 x21 x22 . λ x23 x24 : ι → ι → ι . λ x25 : ι → ι → ο . λ x26 x27 . and (and (and (and (and (y14setexp x22 x16) (∀ x28 . ...∀ x29 . ...ap ... ... = ...)) ...) ...) ...) ...) ... ... ... ... ... ..., ..., ..., ..., ..., ..., ..., ... leaving 2 subgoals.
...
...
Let x15 of type οοο be given.
Apply L2 with λ x16 : ο . x15 x16 y14x15 y14 x16.
Assume H3: x15 y14 y14.
The subproof is completed by applying H3.