Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ιιο be given.
Assume H0: ∀ x2 x3 . x1 x2 x3x1 x3 x2.
Let x2 of type ι be given.
Let x3 of type ι be given.
Let x4 of type ι be given.
Let x5 of type ι be given.
Assume H1: x2x0.
Assume H2: x3x0.
Assume H3: x4x0.
Assume H4: x5x0.
Assume H5: ∀ x6 . x6x2nIn x6 x5.
Assume H6: ∀ x6 . x6x2nIn x6 x3.
Assume H7: ∀ x6 . x6x4nIn x6 x2.
Assume H8: ∀ x6 . x6x4nIn x6 x3.
Assume H9: ∀ x6 . x6x4nIn x6 x5.
Assume H10: ∀ x6 . x6x3nIn x6 x5.
Let x6 of type ι be given.
Let x7 of type ι be given.
Let x8 of type ι be given.
Let x9 of type ι be given.
Let x10 of type ι be given.
Assume H11: x4 = SetAdjoin (SetAdjoin (UPair x6 x7) x8) x9.
Assume H12: x10x5.
Assume H13: ∀ x11 . x11x4(x11 = x10∀ x12 : ο . x12)not (x1 x11 x10)atleastp (binintersect (DirGraphOutNeighbors x0 x1 x11) (DirGraphOutNeighbors x0 x1 x10)) u2.
Assume H14: x6binintersect (DirGraphOutNeighbors x0 x1 x7) (DirGraphOutNeighbors x0 x1 x10).
Assume H15: x6binintersect (DirGraphOutNeighbors x0 x1 x9) (DirGraphOutNeighbors x0 x1 x10).
Assume H16: not (x1 x7 x10).
Assume H17: not (x1 x9 x10).
Let x11 of type ιι be given.
Let x12 of type ιι be given.
Assume H18: ∀ x13 . x13x4x11 x13x2.
Assume H19: ∀ x13 . x13x4x11 x13DirGraphOutNeighbors x0 x1 x13.
Assume H20: ∀ x13 . x13x4x12 x13x3.
Assume H21: ∀ x13 . x13x4x12 x13DirGraphOutNeighbors x0 x1 x13.
Claim L22: ...
...
Claim L23: ...
...
Claim L24: ...
...
Claim L25: ...
...
Claim L26: ...
...
Claim L27: ...
...
Claim L28: ...
...
Claim L29: ...
...
Claim L30: ...
...
Apply H11 with λ x13 x14 . ∀ x15 . x15x14x15{x16 ∈ setminus x4 (Sing x6)|x1 (x11 x16) x10}x15{x16 ∈ setminus x4 (Sing x6)|x1 (x12 x16) x10}x15 = x8.
Apply unknownprop_cb75c47bae3a116273752c6fc8e52c777498313f2b5b4ef43d3ceb63348e2717 with x6, x7, x8, x9, λ x13 . x13{x14 ∈ setminus x4 (Sing x6)|x1 (x11 x14) x10}x13{x14 ∈ setminus x4 (Sing x6)|x1 (x12 x14) x10}x13 = x8 leaving 4 subgoals.
Assume H31: x6{x13 ∈ setminus x4 (Sing x6)|x1 (x11 x13) x10}.
Apply FalseE with x6{x13 ∈ setminus x4 (Sing x6)|x1 (x12 x13) x10}x6 = x8.
Apply setminusE2 with x4, Sing x6, x6 leaving 2 subgoals.
Apply SepE1 with setminus ... ..., ..., ....
...
...
...
...
...