Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ο be given.
Assume H0: ∀ x1 . (∃ x2 : ι → ι . MetaCat_terminal_p struct_c PreContinuousHom struct_id struct_comp x1 x2)x0.
Apply H0 with pack_c 1 (λ x1 : ι → ο . False).
Let x1 of type ο be given.
Assume H1: ∀ x2 : ι → ι . MetaCat_terminal_p struct_c PreContinuousHom struct_id struct_comp (pack_c 1 (λ x3 : ι → ο . False)) x2x1.
Apply H1 with λ x2 . lam (ap x2 0) (λ x3 . 0).
Apply andI with struct_c (pack_c 1 (λ x2 : ι → ο . False)), ∀ x2 . struct_c x2and (PreContinuousHom x2 (pack_c 1 (λ x3 : ι → ο . False)) (lam (ap x2 0) (λ x3 . 0))) (∀ x3 . PreContinuousHom x2 (pack_c 1 (λ x4 : ι → ο . False)) x3x3 = lam (ap x2 0) (λ x4 . 0)) leaving 2 subgoals.
The subproof is completed by applying pack_struct_c_I with 1, λ x2 : ι → ο . False.
Let x2 of type ι be given.
Assume H2: struct_c x2.
Apply H2 with λ x3 . and (PreContinuousHom x3 (pack_c 1 (λ x4 : ι → ο . False)) (lam (ap x3 0) (λ x4 . 0))) (∀ x4 . PreContinuousHom x3 (pack_c 1 (λ x5 : ι → ο . False)) x4x4 = lam (ap x3 0) (λ x5 . 0)).
Let x3 of type ι be given.
Let x4 of type (ιο) → ο be given.
Apply andI with PreContinuousHom (pack_c x3 x4) (pack_c 1 (λ x5 : ι → ο . False)) (lam (ap (pack_c x3 x4) 0) (λ x5 . 0)), ∀ x5 . PreContinuousHom (pack_c x3 x4) (pack_c 1 (λ x6 : ι → ο . False)) x5x5 = lam (ap (pack_c x3 x4) 0) (λ x6 . 0) leaving 2 subgoals.
Apply pack_c_0_eq2 with x3, x4, λ x5 x6 . PreContinuousHom (pack_c x3 x4) (pack_c 1 (λ x7 : ι → ο . False)) (lam x5 (λ x7 . 0)).
Apply unknownprop_147946d52b6747e7a3735111f3622ca84b157f241b7b107aab3bab9bb651af48 with x3, 1, x4, λ x5 : ι → ο . False, lam x3 (λ x5 . 0), λ x5 x6 : ο . x6.
Apply andI with lam x3 (λ x5 . 0)setexp 1 x3, ∀ x5 : ι → ο . (∀ x6 . x5 x6x61)(λ x6 : ι → ο . False) x5x4 (λ x6 . and (x6x3) (x5 (ap (lam x3 (λ x7 . 0)) x6))) leaving 2 subgoals.
Apply lam_Pi with x3, λ x5 . 1, λ x5 . 0.
Let x5 of type ι be given.
Assume H3: x5x3.
The subproof is completed by applying In_0_1.
Let x5 of type ιο be given.
Assume H3: ∀ x6 . x5 x6x61.
Assume H4: (λ x6 : ι → ο . False) x5.
Apply FalseE with x4 (λ x6 . and (x6x3) (x5 (ap (lam x3 (λ x7 . 0)) x6))).
The subproof is completed by applying H4.
Let x5 of type ι be given.
Apply unknownprop_147946d52b6747e7a3735111f3622ca84b157f241b7b107aab3bab9bb651af48 with x3, 1, x4, λ x6 : ι → ο . False, x5, λ x6 x7 : ο . x7x5 = lam (ap (pack_c x3 x4) 0) (λ x8 . 0).
Assume H3: and (x5setexp 1 x3) (∀ x6 : ι → ο . ......x4 ...).
...