Let x0 of type ο be given.
Apply H0 with
pack_c 1 (λ x1 : ι → ο . False).
Let x1 of type ο be given.
Apply H1 with
λ x2 . lam (ap x2 0) (λ x3 . 0).
Apply andI with
struct_c (pack_c 1 (λ x2 : ι → ο . False)),
∀ x2 . struct_c x2 ⟶ and (PreContinuousHom x2 (pack_c 1 (λ x3 : ι → ο . False)) (lam (ap x2 0) (λ x3 . 0))) (∀ x3 . PreContinuousHom x2 (pack_c 1 (λ x4 : ι → ο . False)) x3 ⟶ x3 = lam (ap x2 0) (λ x4 . 0)) leaving 2 subgoals.
The subproof is completed by applying pack_struct_c_I with
1,
λ x2 : ι → ο . False.
Let x2 of type ι be given.
Apply H2 with
λ x3 . and (PreContinuousHom x3 (pack_c 1 (λ x4 : ι → ο . False)) (lam (ap x3 0) (λ x4 . 0))) (∀ x4 . PreContinuousHom x3 (pack_c 1 (λ x5 : ι → ο . False)) x4 ⟶ x4 = lam (ap x3 0) (λ x5 . 0)).
Let x3 of type ι be given.
Let x4 of type (ι → ο) → ο be given.
Apply andI with
PreContinuousHom (pack_c x3 x4) (pack_c 1 (λ x5 : ι → ο . False)) (lam (ap (pack_c x3 x4) 0) (λ x5 . 0)),
∀ x5 . PreContinuousHom (pack_c x3 x4) (pack_c 1 (λ x6 : ι → ο . False)) x5 ⟶ x5 = lam (ap (pack_c x3 x4) 0) (λ x6 . 0) leaving 2 subgoals.
Apply pack_c_0_eq2 with
x3,
x4,
λ x5 x6 . PreContinuousHom (pack_c x3 x4) (pack_c 1 (λ x7 : ι → ο . False)) (lam x5 (λ x7 . 0)).
Apply unknownprop_147946d52b6747e7a3735111f3622ca84b157f241b7b107aab3bab9bb651af48 with
x3,
1,
x4,
λ x5 : ι → ο . False,
lam x3 (λ x5 . 0),
λ x5 x6 : ο . x6.
Apply andI with
lam x3 (λ x5 . 0) ∈ setexp 1 x3,
∀ x5 : ι → ο . (∀ x6 . x5 x6 ⟶ x6 ∈ 1) ⟶ (λ x6 : ι → ο . False) x5 ⟶ x4 (λ x6 . and (x6 ∈ x3) (x5 (ap (lam x3 (λ x7 . 0)) x6))) leaving 2 subgoals.
Apply lam_Pi with
x3,
λ x5 . 1,
λ x5 . 0.
Let x5 of type ι be given.
Assume H3: x5 ∈ x3.
The subproof is completed by applying In_0_1.
Let x5 of type ι → ο be given.
Assume H3: ∀ x6 . x5 x6 ⟶ x6 ∈ 1.
Assume H4:
(λ x6 : ι → ο . False) x5.
Apply FalseE with
x4 (λ x6 . and (x6 ∈ x3) (x5 (ap (lam x3 (λ x7 . 0)) x6))).
The subproof is completed by applying H4.
Let x5 of type ι be given.
Apply unknownprop_147946d52b6747e7a3735111f3622ca84b157f241b7b107aab3bab9bb651af48 with
x3,
1,
x4,
λ x6 : ι → ο . False,
x5,
λ x6 x7 : ο . x7 ⟶ x5 = lam (ap (pack_c x3 x4) 0) (λ x8 . 0).
Assume H3:
and (x5 ∈ setexp 1 x3) (∀ x6 : ι → ο . ... ⟶ ... ⟶ x4 ...).