Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ιο be given.
Assume H0: ∀ x2 . x1 x2∀ x3 . x3x2nIn x0 x3.
Let x2 of type ιι be given.
Let x3 of type ιι be given.
Let x4 of type ιιι be given.
Let x5 of type ιιι be given.
Assume H1: ∀ x6 . x1 x6x1 (x2 x6).
Assume H2: ∀ x6 . x1 x6x1 (x3 x6).
Assume H3: ∀ x6 x7 . x1 x6x1 x7x1 (x4 x6 x7).
Assume H4: ∀ x6 x7 . x1 x6x1 x7x1 (x5 x6 x7).
Let x6 of type ι be given.
Let x7 of type ι be given.
Assume H5: CD_carr x0 x1 x6.
Assume H6: CD_carr x0 x1 x7.
Claim L7: ...
...
Claim L8: ...
...
Claim L9: ...
...
Claim L10: ...
...
Claim L11: ...
...
Claim L12: ...
...
Claim L13: ...
...
Claim L14: x1 (x5 ... ...)
...
Claim L15: x1 (x2 (x5 (x3 (CD_proj1 x0 x1 x7)) (CD_proj1 x0 x1 x6)))
Apply H1 with x5 (x3 (CD_proj1 x0 x1 x7)) (CD_proj1 x0 x1 x6).
The subproof is completed by applying L14.
Claim L16: x1 (x4 (x5 (CD_proj0 x0 x1 x6) (CD_proj0 x0 x1 x7)) (x2 (x5 (x3 (CD_proj1 x0 x1 x7)) (CD_proj1 x0 x1 x6))))
Apply H3 with x5 (CD_proj0 x0 x1 x6) (CD_proj0 x0 x1 x7), x2 (x5 (x3 (CD_proj1 x0 x1 x7)) (CD_proj1 x0 x1 x6)) leaving 2 subgoals.
The subproof is completed by applying L13.
The subproof is completed by applying L15.
Claim L17: x1 (x5 (CD_proj1 x0 x1 x7) (CD_proj0 x0 x1 x6))
Apply H4 with CD_proj1 x0 x1 x7, CD_proj0 x0 x1 x6 leaving 2 subgoals.
The subproof is completed by applying L10.
The subproof is completed by applying L7.
Claim L18: x1 (x5 (CD_proj1 x0 x1 x6) (x3 (CD_proj0 x0 x1 x7)))
Apply H4 with CD_proj1 x0 x1 x6, x3 (CD_proj0 x0 x1 x7) leaving 2 subgoals.
The subproof is completed by applying L8.
The subproof is completed by applying L11.
Claim L19: x1 (x4 (x5 (CD_proj1 x0 x1 x7) (CD_proj0 x0 x1 x6)) (x5 (CD_proj1 x0 x1 x6) (x3 (CD_proj0 x0 x1 x7))))
Apply H3 with x5 (CD_proj1 x0 x1 x7) (CD_proj0 x0 x1 x6), x5 (CD_proj1 x0 x1 x6) (x3 (CD_proj0 x0 x1 x7)) leaving 2 subgoals.
The subproof is completed by applying L17.
The subproof is completed by applying L18.
Apply CD_proj0_2 with x0, x1, x4 (x5 (CD_proj0 x0 x1 x6) (CD_proj0 x0 x1 x7)) (x2 (x5 (x3 (CD_proj1 x0 x1 x7)) (CD_proj1 x0 x1 x6))), x4 (x5 (CD_proj1 x0 x1 x7) (CD_proj0 x0 x1 x6)) (x5 (CD_proj1 x0 x1 x6) (x3 (CD_proj0 x0 x1 x7))) leaving 3 subgoals.
The subproof is completed by applying H0.
The subproof is completed by applying L16.
The subproof is completed by applying L19.