Apply unknownprop_1ad59b907936b2a3f58528f51c1b27d67d89955cf0fe7705f9645ea773142ed8 with
4a7ef..,
∃ x0 . ∀ x1 . iff (prim1 x1 x0) (ba9d8.. x1).
Let x0 of type ι be given.
Apply H0 with
∃ x1 . ∀ x2 . iff (prim1 x2 x1) (ba9d8.. x2).
Apply H1 with
(∀ x1 . Subq x1 x0 ⟶ or (c2e41.. x1 x0) (prim1 x1 x0)) ⟶ ∃ x1 . ∀ x2 . iff (prim1 x2 x1) (ba9d8.. x2).
Apply H2 with
(∀ x1 . prim1 x1 x0 ⟶ ∃ x2 . and (prim1 x2 x0) (∀ x3 . Subq x3 x1 ⟶ prim1 x3 x2)) ⟶ (∀ x1 . Subq x1 x0 ⟶ or (c2e41.. x1 x0) (prim1 x1 x0)) ⟶ ∃ x1 . ∀ x2 . iff (prim1 x2 x1) (ba9d8.. x2).
Assume H4:
∀ x1 x2 . prim1 x1 x0 ⟶ Subq x2 x1 ⟶ prim1 x2 x0.
Let x1 of type ο be given.
Apply H8 with
1216a.. x0 (λ x2 . ba9d8.. x2).
Let x2 of type ι be given.
Apply iffI with
prim1 x2 (1216a.. x0 (λ x3 . ba9d8.. x3)),
ba9d8.. x2 leaving 2 subgoals.
Apply unknownprop_e75b5686f39ea4dca8e72e616b0514162494e9e895f52dbe14fa1984a713fe57 with
x0,
ba9d8..,
x2.
The subproof is completed by applying H9.
Apply unknownprop_1dada0fb38ff7f9b45b564ad11d6295d93250427446875218f17ee62431454a6 with
x0,
λ x3 . ba9d8.. x3,
x2 leaving 2 subgoals.
Apply L7 with
x2.
The subproof is completed by applying H9.
The subproof is completed by applying H9.