Search for blocks/addresses/...

Proofgold Proof

pf
Apply unknownprop_1ad59b907936b2a3f58528f51c1b27d67d89955cf0fe7705f9645ea773142ed8 with 4a7ef.., ∃ x0 . ∀ x1 . iff (prim1 x1 x0) (ba9d8.. x1).
Let x0 of type ι be given.
Assume H0: (λ x1 . and (and (and (prim1 4a7ef.. x1) (∀ x2 x3 . prim1 x2 x1Subq x3 x2prim1 x3 x1)) (∀ x2 . prim1 x2 x1∃ x3 . and (prim1 x3 x1) (∀ x4 . Subq x4 x2prim1 x4 x3))) (∀ x2 . Subq x2 x1or (c2e41.. x2 x1) (prim1 x2 x1))) x0.
Apply H0 with ∃ x1 . ∀ x2 . iff (prim1 x2 x1) (ba9d8.. x2).
Assume H1: and (and (prim1 4a7ef.. x0) (∀ x1 x2 . prim1 x1 x0Subq x2 x1prim1 x2 x0)) (∀ x1 . prim1 x1 x0∃ x2 . and (prim1 x2 x0) (∀ x3 . Subq x3 x1prim1 x3 x2)).
Apply H1 with (∀ x1 . Subq x1 x0or (c2e41.. x1 x0) (prim1 x1 x0))∃ x1 . ∀ x2 . iff (prim1 x2 x1) (ba9d8.. x2).
Assume H2: and (prim1 4a7ef.. x0) (∀ x1 x2 . prim1 x1 x0Subq x2 x1prim1 x2 x0).
Apply H2 with (∀ x1 . prim1 x1 x0∃ x2 . and (prim1 x2 x0) (∀ x3 . Subq x3 x1prim1 x3 x2))(∀ x1 . Subq x1 x0or (c2e41.. x1 x0) (prim1 x1 x0))∃ x1 . ∀ x2 . iff (prim1 x2 x1) (ba9d8.. x2).
Assume H3: prim1 4a7ef.. x0.
Assume H4: ∀ x1 x2 . prim1 x1 x0Subq x2 x1prim1 x2 x0.
Assume H5: ∀ x1 . prim1 x1 x0∃ x2 . and (prim1 x2 x0) (∀ x3 . Subq x3 x1prim1 x3 x2).
Assume H6: ∀ x1 . Subq x1 x0or (c2e41.. x1 x0) (prim1 x1 x0).
Claim L7: ...
...
Let x1 of type ο be given.
Assume H8: ∀ x2 . (∀ x3 . iff (prim1 x3 x2) (ba9d8.. x3))x1.
Apply H8 with 1216a.. x0 (λ x2 . ba9d8.. x2).
Let x2 of type ι be given.
Apply iffI with prim1 x2 (1216a.. x0 (λ x3 . ba9d8.. x3)), ba9d8.. x2 leaving 2 subgoals.
Assume H9: prim1 x2 (1216a.. x0 (λ x3 . ba9d8.. x3)).
Apply unknownprop_e75b5686f39ea4dca8e72e616b0514162494e9e895f52dbe14fa1984a713fe57 with x0, ba9d8.., x2.
The subproof is completed by applying H9.
Assume H9: ba9d8.. x2.
Apply unknownprop_1dada0fb38ff7f9b45b564ad11d6295d93250427446875218f17ee62431454a6 with x0, λ x3 . ba9d8.. x3, x2 leaving 2 subgoals.
Apply L7 with x2.
The subproof is completed by applying H9.
The subproof is completed by applying H9.