Let x0 of type ι → ι → ο be given.
Let x1 of type ι → ι be given.
Let x2 of type ι → ι → ο be given.
Let x3 of type ι → ι → ο be given.
Let x4 of type ι → ι → ι → ι → ι be given.
Let x5 of type ι → ι → ι be given.
Let x6 of type ι → ι → ι be given.
Let x7 of type ι → ι → ο be given.
Let x8 of type ι → ι → ι be given.
Let x9 of type ι be given.
Let x10 of type ι → ι be given.
Let x11 of type ι → ι → ι be given.
Let x12 of type ι → ι be given.
Let x13 of type ι be given.
Let x14 of type ι → ι → ι be given.
Let x15 of type ι → ι → ι → ι be given.
Let x16 of type ι → ο be given.
Let x17 of type ι → ι → ο be given.
Let x18 of type ι be given.
Let x19 of type ι be given.
Let x20 of type ι be given.
Let x21 of type ι be given.
Let x22 of type ι → ι → ι be given.
Let x23 of type ι → ι be given.
Let x24 of type ι → ι → ι be given.
Let x25 of type ι be given.
Let x26 of type ι be given.
Let x27 of type ι be given.
Let x28 of type ι → ο be given.
Let x29 of type ι → ι be given.
Let x30 of type ι → ο be given.
Let x31 of type ι → ο be given.
Let x32 of type ι → ι → ι be given.
Let x33 of type ι → ι → ο be given.
Let x34 of type ι → ι be given.
Let x35 of type ι → ι → ο be given.
Let x36 of type ι → ι be given.
Let x37 of type ι → ι be given.
Let x38 of type ι be given.
Let x39 of type ι → ο be given.
Assume H5:
∀ x40 x41 . x39 x41 ⟶ (x41 = x40 ⟶ False) ⟶ x39 x40 ⟶ False.
Assume H6:
∀ x40 x41 . x0 x40 x41 ⟶ x39 x41 ⟶ False.
Assume H7:
∀ x40 . x39 x40 ⟶ (x40 = x38 ⟶ False) ⟶ False.
Assume H8:
∀ x40 x41 x42 . x0 x40 x41 ⟶ x2 x41 (x1 x42) ⟶ x39 x42 ⟶ False.
Assume H9:
∀ x40 x41 x42 . x0 x41 x42 ⟶ x2 x42 (x1 x40) ⟶ (x2 x41 x40 ⟶ False) ⟶ False.
Assume H10:
∀ x40 x41 . x3 x41 x40 ⟶ (x2 x41 (x1 x40) ⟶ False) ⟶ False.
Assume H11:
∀ x40 x41 . x2 x41 (x1 x40) ⟶ (x3 x41 x40 ⟶ False) ⟶ False.
Assume H12:
∀ x40 x41 . x2 x40 x41 ⟶ (x39 x41 ⟶ False) ⟶ (x0 x40 x41 ⟶ False) ⟶ False.
Assume H13:
∀ x40 x41 . x0 x41 x40 ⟶ (x2 x41 x40 ⟶ False) ⟶ False.
Assume H14:
∀ x40 . (x3 x40 x40 ⟶ False) ⟶ False.
Assume H15:
∀ x40 . (x37 x40 = x1 x40 ⟶ False) ⟶ False.
Assume H16:
∀ x40 x41 x42 x43 . x2 x43 (x1 (x6 x42 x41)) ⟶ (x4 x42 x41 x43 x40 = x5 x43 x40 ⟶ False) ⟶ False.
Assume H17:
∀ x40 . (x39 x40 ⟶ False) ⟶ (x35 (x36 x40) x40 ⟶ False) ⟶ False.
Assume H18:
∀ x40 . (x39 x40 ⟶ False) ⟶ (x2 (x36 x40) (x1 x40) ⟶ False) ⟶ False.
Assume H19:
∀ x40 . x35 (x34 x40) x40 ⟶ False.
Assume H20:
∀ x40 . (x2 (x34 x40) (x1 x40) ⟶ False) ⟶ False.
Assume H21:
∀ x40 x41 . (x33 (x32 x40 x41) x40 ⟶ False) ⟶ False.
Assume H22:
∀ x40 x41 . (x7 (x32 x41 x40) x40 ⟶ False) ⟶ False.
Assume H23:
∀ x40 x41 . (x31 (x32 x40 x41) ⟶ False) ⟶ False.
Assume H24:
∀ x40 x41 . (x39 x41 ⟶ False) ⟶ (x39 x40 ⟶ False) ⟶ x39 (x8 x40 x41) ⟶ False.
Assume H25:
∀ x40 x41 . (x39 x41 ⟶ False) ⟶ (x39 x40 ⟶ False) ⟶ (x30 (x8 x40 x41) ⟶ False) ⟶ False.
Assume H26:
∀ x40 x41 . (x39 x41 ⟶ False) ⟶ (x39 x40 ⟶ False) ⟶ (x33 (x8 x40 x41) x40 ⟶ False) ⟶ False.
Assume H27:
∀ x40 x41 . ... ⟶ ... ⟶ ... ⟶ False.