Apply unknownprop_9eb52b34dc5ec3159c14c43cf9730f7233c1ae17392d54fc91e463c1c0c6ba1d with
λ x0 . ∃ x1 : ι → ο . 858ff.. x0 x1 leaving 3 subgoals.
Let x0 of type ο be given.
Apply H0 with
07017...
The subproof is completed by applying unknownprop_fecdd5feecd0903be897193dc6d5c928cc89dee8ad0003c049becc2b40bb6fd9.
Let x0 of type ι be given.
Let x1 of type ι be given.
Assume H1:
∃ x2 : ι → ο . 858ff.. x0 x2.
Assume H3:
∃ x2 : ι → ο . 858ff.. x1 x2.
Apply H1 with
∃ x2 : ι → ο . 858ff.. (a3eb9.. x0 x1) x2.
Let x2 of type ι → ο be given.
Assume H4:
(λ x3 : ι → ο . 858ff.. x0 x3) x2.
Apply H3 with
∃ x3 : ι → ο . 858ff.. (a3eb9.. x0 x1) x3.
Let x3 of type ι → ο be given.
Assume H5:
(λ x4 : ι → ο . 858ff.. x1 x4) x3.
Let x4 of type ο be given.
Apply H6 with
c0709.. x2 x3.
Apply unknownprop_5eb4ddfb74eefcd5c762267d7191316fb0217c9ec50cc348a69d4e78ed1a8f5b with
x0,
x1,
x2,
x3 leaving 2 subgoals.
The subproof is completed by applying H4.
The subproof is completed by applying H5.
Let x0 of type ι be given.
Let x1 of type ι be given.
Assume H1:
∃ x2 : ι → ο . 858ff.. x0 x2.
Assume H3:
∃ x2 : ι → ο . 858ff.. x1 x2.
Apply H1 with
∃ x2 : ι → ο . 858ff.. (bf68c.. x0 x1) x2.
Let x2 of type ι → ο be given.
Assume H4:
(λ x3 : ι → ο . 858ff.. x0 x3) x2.
Apply H3 with
∃ x3 : ι → ο . 858ff.. (bf68c.. x0 x1) x3.
Let x3 of type ι → ο be given.
Assume H5:
(λ x4 : ι → ο . 858ff.. x1 x4) x3.
Let x4 of type ο be given.
Apply H6 with
6e020.. x2 x3.
Apply unknownprop_d89e2d7f5df186af50ca21937230a175df55e9443d213018553bd36068f2a56f with
x0,
x1,
x2,
x3 leaving 2 subgoals.
The subproof is completed by applying H4.
The subproof is completed by applying H5.