Let x0 of type ι → ο be given.
Let x1 of type ι → ι be given.
Let x2 of type ι → ι be given.
Let x3 of type ι → ο be given.
Let x4 of type ι → ι → ο be given.
Let x5 of type ι → ι → ι be given.
Let x6 of type ι be given.
Let x7 of type ι be given.
Let x8 of type ι be given.
Let x9 of type ι → ι → ι → ο be given.
Let x10 of type ι → ο be given.
Let x11 of type ι be given.
Let x12 of type ι → ι → ο be given.
Let x13 of type ι → ι be given.
Let x14 of type ι → ο be given.
Let x15 of type ι → ι be given.
Let x16 of type ι → ο be given.
Let x17 of type ι → ι be given.
Let x18 of type ι → ο be given.
Let x19 of type ι → ι be given.
Let x20 of type ι be given.
Let x21 of type ι → ο be given.
Let x22 of type ι be given.
Let x23 of type ι be given.
Let x24 of type ι → ο be given.
Let x25 of type ι → ο be given.
Let x26 of type ι be given.
Let x27 of type ι be given.
Let x28 of type ι be given.
Let x29 of type ι be given.
Let x30 of type ι → ι → ι be given.
Let x31 of type ι → ο be given.
Let x32 of type ι → ι → ι be given.
Let x33 of type ι be given.
Let x34 of type ι → ο be given.
Let x35 of type ι be given.
Let x36 of type ι be given.
Let x37 of type ι → ι → ι be given.
Let x38 of type ι → ι → ι → ι be given.
Let x39 of type ι → ι → ι → ι → ι be given.
Let x40 of type ι → ι → ο be given.
Let x41 of type ι → ι → ι be given.
Let x42 of type ι → ι → ι be given.
Let x43 of type ι → ι → ι → ι be given.
Let x44 of type ι → ι be given.
Let x45 of type ι → ι be given.
Let x46 of type ι → ι be given.
Let x47 of type ι → ο be given.
Let x48 of type ι be given.
Let x49 of type ι be given.
Let x50 of type ι be given.
Let x51 of type ι → ο be given.
Let x52 of type ι → ο be given.
Let x53 of type ι be given.
Let x54 of type ι be given.
Let x55 of type ι be given.
Let x56 of type ι → ο be given.
Let x57 of type ι be given.
Let x58 of type ι → ο be given.
Let x59 of type ι → ι be given.
Let x60 of type ι → ο be given.
Let x61 of type ι be given.
Let x62 of type ι → ο be given.
Let x63 of type ι be given.
Let x64 of type ι → ι → ι be given.
Let x65 of type ι → ι → ο be given.
Let x66 of type ι → ι → ο be given.
Let x67 of type ι → ι be given.
Let x68 of type ι be given.
Let x69 of type ι → ι → ο be given.
Let x70 of type ι → ο be given.
Assume H5:
∀ x71 . x70 x71 ⟶ (x71 = x68 ⟶ False) ⟶ (x69 x68 x71 ⟶ False) ⟶ False.
Assume H6:
∀ x71 x72 . x0 x72 ⟶ (x72 = x71 ⟶ False) ⟶ x0 x71 ⟶ False.
Assume H7:
∀ x71 x72 . x69 x71 x72 ⟶ x0 x72 ⟶ False.
Assume H8:
∀ x71 . x0 x71 ⟶ (x71 = x68 ⟶ False) ⟶ False.
Assume H9:
∀ x71 x72 x73 . x69 x71 x72 ⟶ x66 x72 (x67 x73) ⟶ x0 x73 ⟶ False.
Assume H10:
∀ x71 x72 x73 . x69 x72 x73 ⟶ x66 x73 (x67 x71) ⟶ (x66 x72 x71 ⟶ False) ⟶ False.
Assume H11:
∀ x71 x72 . x65 x72 x71 ⟶ (x66 x72 (x67 x71) ⟶ False) ⟶ False.
Assume H12:
∀ x71 x72 . x66 x72 (x67 x71) ⟶ (x65 x72 x71 ⟶ False) ⟶ False.
Assume H13:
∀ x71 x72 . x66 x71 x72 ⟶ (x0 x72 ⟶ False) ⟶ (x69 x71 x72 ⟶ False) ⟶ False.
Assume H14:
∀ x71 . x70 x71 ⟶ x69 (x2 (x1 x71)) x71 ⟶ (x3 x71 ⟶ False) ⟶ False.
Assume H15:
∀ x71 . x70 x71 ⟶ (x69 (x1 x71) x71 ⟶ False) ⟶ (x3 x71 ⟶ False) ⟶ False.
Assume H16:
∀ x71 . x70 x71 ⟶ (x70 (x1 x71) ⟶ False) ⟶ (x3 x71 ⟶ False) ⟶ False.
Assume H17:
∀ x71 x72 . x70 x72 ⟶ x3 x72 ⟶ x70 x71 ⟶ x69 x71 x72 ⟶ (x69 (x2 x71) x72 ⟶ False) ⟶ False.
Assume H18:
∀ x71 x72 . x70 x72 ⟶ x70 x71 ⟶ x4 (x2 x72) x71 ⟶ (x69 x72 x71 ⟶ False) ⟶ False.
Assume H19:
∀ x71 x72 . x70 x72 ⟶ x70 x71 ⟶ x69 x72 x71 ⟶ (x4 (x2 x72) x71 ⟶ False) ⟶ False.
Assume H20:
∀ x71 . x70 x71 ⟶ (x71 = x68 ⟶ False) ⟶ (x5 x68 x71 = x68 ⟶ False) ⟶ False.
Assume H21:
∀ x71 x72 . x69 x72 x71 ⟶ (x66 x72 x71 ⟶ False) ⟶ False.
Assume H22:
(x66 x68 x6 ⟶ False) ⟶ False.
Assume H23:
∀ x71 . (x64 x71 x68 = x71 ⟶ False) ⟶ False.