Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ι be given.
Let x3 of type ι be given.
Assume H0: SNoCutP x0 x1.
Assume H1: SNoCutP x2 x3.
Assume H2: ∀ x4 . x4x0SNoLt x4 (SNoCut x2 x3).
Assume H3: ∀ x4 . x4x3SNoLt (SNoCut x0 x1) x4.
Apply H0 with SNoLe (SNoCut x0 x1) (SNoCut x2 x3).
Assume H4: and (∀ x4 . x4x0SNo x4) (∀ x4 . x4x1SNo x4).
Apply H4 with (∀ x4 . x4x0∀ x5 . x5x1SNoLt x4 x5)SNoLe (SNoCut x0 x1) (SNoCut x2 x3).
Assume H5: ∀ x4 . x4x0SNo x4.
Assume H6: ∀ x4 . x4x1SNo x4.
Assume H7: ∀ x4 . x4x0∀ x5 . x5x1SNoLt x4 x5.
Apply H1 with SNoLe (SNoCut x0 x1) (SNoCut x2 x3).
Assume H8: and (∀ x4 . x4x2SNo x4) (∀ x4 . x4x3SNo x4).
Apply H8 with (∀ x4 . x4x2∀ x5 . x5x3SNoLt x4 x5)SNoLe (SNoCut x0 x1) (SNoCut x2 x3).
Assume H9: ∀ x4 . x4x2SNo x4.
Assume H10: ∀ x4 . x4x3SNo x4.
Assume H11: ∀ x4 . x4x2∀ x5 . x5x3SNoLt x4 x5.
Apply SNoCutP_SNoCut with x0, x1, SNoLe (SNoCut x0 x1) (SNoCut x2 x3) leaving 2 subgoals.
The subproof is completed by applying H0.
Assume H12: and (and (and (SNo (SNoCut x0 x1)) (SNoLev (SNoCut x0 x1)ordsucc (binunion (famunion x0 (λ x4 . ordsucc (SNoLev x4))) (famunion x1 (λ x4 . ordsucc (SNoLev x4)))))) (∀ x4 . x4x0SNoLt x4 (SNoCut x0 x1))) (∀ x4 . x4x1SNoLt (SNoCut x0 x1) x4).
Apply H12 with (∀ x4 . SNo x4(∀ x5 . x5x0SNoLt x5 x4)(∀ x5 . x5x1SNoLt x4 x5)and (SNoLev (SNoCut x0 x1)SNoLev x4) (SNoEq_ (SNoLev (SNoCut x0 x1)) (SNoCut x0 x1) x4))SNoLe (SNoCut x0 x1) (SNoCut x2 x3).
Assume H13: and (and (SNo (SNoCut x0 x1)) (SNoLev (SNoCut x0 x1)ordsucc (binunion (famunion ... ...) ...))) ....
...