Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ο be given.
Assume H0: ∀ x1 : ι → ι → ι . (∃ x2 x3 : ι → ι → ι . ∃ x4 : ι → ι → ι → ι → ι → ι . MetaCat_product_constr_p IrreflexiveTransitiveReln BinRelnHom struct_id struct_comp x1 x2 x3 x4)x0.
Apply H0 with BinReln_product.
Let x1 of type ο be given.
Assume H1: ∀ x2 : ι → ι → ι . (∃ x3 : ι → ι → ι . ∃ x4 : ι → ι → ι → ι → ι → ι . MetaCat_product_constr_p IrreflexiveTransitiveReln BinRelnHom struct_id struct_comp BinReln_product x2 x3 x4)x1.
Apply H1 with λ x2 x3 . lam (setprod (ap x2 0) (ap x3 0)) (λ x4 . ap x4 0).
Let x2 of type ο be given.
Assume H2: ∀ x3 : ι → ι → ι . (∃ x4 : ι → ι → ι → ι → ι → ι . MetaCat_product_constr_p IrreflexiveTransitiveReln BinRelnHom struct_id struct_comp BinReln_product (λ x5 x6 . lam (setprod (ap x5 0) (ap x6 0)) (λ x7 . ap x7 0)) x3 x4)x2.
Apply H2 with λ x3 x4 . lam (setprod (ap x3 0) (ap x4 0)) (λ x5 . ap x5 1).
Let x3 of type ο be given.
Assume H3: ∀ x4 : ι → ι → ι → ι → ι → ι . MetaCat_product_constr_p IrreflexiveTransitiveReln BinRelnHom struct_id struct_comp BinReln_product (λ x5 x6 . lam (setprod (ap x5 0) (ap x6 0)) (λ x7 . ap x7 0)) (λ x5 x6 . lam (setprod (ap x5 0) (ap x6 0)) (λ x7 . ap x7 1)) x4x3.
Apply H3 with λ x4 x5 x6 x7 x8 . lam (ap x6 0) (λ x9 . lam 2 (λ x10 . If_i (x10 = 0) (ap x7 x9) (ap x8 x9))).
Apply unknownprop_5f5149dc445b1bf6ca4a7f60e27b87771b4704fa8e9610ac4ab806ac27b93c0b with IrreflexiveTransitiveReln leaving 2 subgoals.
The subproof is completed by applying unknownprop_d843c34578125329414df28865a610fdc4b3dedf56de3dd9e99c774f88282c4d.
The subproof is completed by applying unknownprop_adf9af6df0ab9ce6906c8af96b0e8b5f458fb0d3ac8ad3a40c928c13a16dac6a.