Let x0 of type ο be given.
Apply H0 with
BinReln_product.
Let x1 of type ο be given.
Apply H1 with
λ x2 x3 . lam (setprod (ap x2 0) (ap x3 0)) (λ x4 . ap x4 0).
Let x2 of type ο be given.
Apply H2 with
λ x3 x4 . lam (setprod (ap x3 0) (ap x4 0)) (λ x5 . ap x5 1).
Let x3 of type ο be given.
Apply H3 with
λ x4 x5 x6 x7 x8 . lam (ap x6 0) (λ x9 . lam 2 (λ x10 . If_i (x10 = 0) (ap x7 x9) (ap x8 x9))).
Apply unknownprop_5f5149dc445b1bf6ca4a7f60e27b87771b4704fa8e9610ac4ab806ac27b93c0b with
IrreflexiveTransitiveReln leaving 2 subgoals.
The subproof is completed by applying unknownprop_d843c34578125329414df28865a610fdc4b3dedf56de3dd9e99c774f88282c4d.
The subproof is completed by applying unknownprop_adf9af6df0ab9ce6906c8af96b0e8b5f458fb0d3ac8ad3a40c928c13a16dac6a.