Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι) be given.
Let x1 of type ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι) be given.
Let x2 of type ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι) be given.
Let x3 of type ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι) be given.
Assume H0: ChurchNum_3ary_proj_p x0.
Assume H1: ChurchNum_8ary_proj_p x2.
Assume H2: ChurchNum_3ary_proj_p x1.
Assume H3: ChurchNum_8ary_proj_p x3.
Apply H0 with λ x4 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . x4 = (λ x5 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . λ x6 x7 x8 : (ι → ι)ι → ι . x5 x8 x6 x7) x1ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt4_id_ge4_rot2 x2 x4) (ChurchNums_8_perm_4_5_6_7_0_1_2_3 x2) = ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt4_id_ge4_rot2 x3 x1) (ChurchNums_8_perm_4_5_6_7_0_1_2_3 x3)∀ x5 : ο . x5 leaving 3 subgoals.
Apply H2 with λ x4 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . (λ x5 x6 x7 : (ι → ι)ι → ι . x5) = (λ x5 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . λ x6 x7 x8 : (ι → ι)ι → ι . x5 x8 x6 x7) x4ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt4_id_ge4_rot2 x2 (λ x5 x6 x7 : (ι → ι)ι → ι . x5)) (ChurchNums_8_perm_4_5_6_7_0_1_2_3 x2) = ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt4_id_ge4_rot2 x3 x4) (ChurchNums_8_perm_4_5_6_7_0_1_2_3 x3)∀ x5 : ο . x5 leaving 3 subgoals.
Assume H4: (λ x4 x5 x6 : (ι → ι)ι → ι . x4) = λ x4 x5 x6 : (ι → ι)ι → ι . x6.
Apply FalseE with ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt4_id_ge4_rot2 x2 (λ x4 x5 x6 : (ι → ι)ι → ι . x4)) (ChurchNums_8_perm_4_5_6_7_0_1_2_3 x2) = ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt4_id_ge4_rot2 x3 (λ x4 x5 x6 : (ι → ι)ι → ι . x4)) (ChurchNums_8_perm_4_5_6_7_0_1_2_3 x3)∀ x4 : ο . x4.
Apply neq_0_1.
Apply H4 with λ x4 x5 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . x5 (λ x6 : ι → ι . λ x7 . x7) (λ x6 : ι → ι . λ x7 . x7) (λ x6 : ι → ι . x6) ordsucc 0 = (λ x6 x7 x8 : (ι → ι)ι → ι . x8) (λ x6 : ι → ι . λ x7 . x7) (λ x6 : ι → ι . λ x7 . x7) (λ x6 : ι → ι . x6) ordsucc 0.
Let x4 of type ιιο be given.
Assume H5: x4 ((λ x5 x6 x7 : (ι → ι)ι → ι . x7) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) ordsucc 0) ((λ x5 x6 x7 : (ι → ι)ι → ι . x7) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) ordsucc 0).
The subproof is completed by applying H5.
Apply H1 with λ x4 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . (λ x5 x6 x7 : (ι → ι)ι → ι . x5) = (λ x5 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . λ x6 x7 x8 : (ι → ι)ι → ι . x5 x8 x6 x7) (λ x5 x6 x7 : (ι → ι)ι → ι . x6)ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt4_id_ge4_rot2 x4 (λ x5 x6 x7 : (ι → ι)ι → ι . x5)) (ChurchNums_8_perm_4_5_6_7_0_1_2_3 x4) = ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt4_id_ge4_rot2 x3 (λ x5 x6 x7 : (ι → ι)ι → ι . x6)) (ChurchNums_8_perm_4_5_6_7_0_1_2_3 x3)∀ x5 : ο . x5 leaving 8 subgoals.
Apply H3 with λ x4 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . (λ x5 x6 x7 : (ι → ι)ι → ι . x5) = (λ x5 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . λ x6 x7 x8 : (ι → ι)ι → ι . x5 x8 x6 x7) (λ x5 x6 x7 : (ι → ι)ι → ι . x6)ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt4_id_ge4_rot2 (λ x5 x6 x7 x8 x9 x10 x11 x12 : (ι → ι)ι → ι . x5) (λ x5 x6 x7 : (ι → ι)ι → ι . x5)) (ChurchNums_8_perm_4_5_6_7_0_1_2_3 (λ x5 x6 x7 x8 x9 x10 x11 x12 : (ι → ι)ι → ι . x5)) = ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt4_id_ge4_rot2 x4 (λ x5 x6 x7 : (ι → ι)ι → ι . x6)) (ChurchNums_8_perm_4_5_6_7_0_1_2_3 x4)∀ x5 : ο . x5 leaving 8 subgoals.
Assume H4: (λ x4 x5 x6 : (ι → ι)ι → ι . x4) = (λ x4 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . λ x5 x6 x7 : (ι → ι)ι → ι . x4 x7 x5 x6) (λ x4 x5 x6 : (ι → ι)ι → ι . x5).
Assume H5: ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt4_id_ge4_rot2 (λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι)ι → ι . x4) (λ x4 x5 x6 : (ι → ι)ι → ι . x4)) (ChurchNums_8_perm_4_5_6_7_0_1_2_3 (λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι)ι → ι . x4)) = ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt4_id_ge4_rot2 (λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι)ι → ι . x4) (λ x4 x5 x6 : (ι → ι)ι → ι . x5)) (ChurchNums_8_perm_4_5_6_7_0_1_2_3 (λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι)ι → ι . x4)).
Apply unknownprop_0aa1897333a9220b7c647af2a5a102d331686166cd7d81d697467978bffb14b8.
Let x4 of type ιιο be given.
The subproof is completed by applying H5 with λ x5 x6 . x4 x6 x5.
Assume H4: (λ x4 x5 x6 : (ι → ι)ι → ι . x4) = (λ x4 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . λ x5 x6 x7 : (ι → ι)ι → ι . x4 x7 x5 x6) (λ x4 x5 x6 : (ι → ι)ι → ι . x5).
Assume H5: ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt4_id_ge4_rot2 (λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι)ι → ι . x4) (λ x4 x5 x6 : (ι → ι)ι → ι . x4)) (ChurchNums_8_perm_4_5_6_7_0_1_2_3 ...) = ....
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...