Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ιιι be given.
Let x2 of type ιιι be given.
Let x3 of type ιι be given.
Let x4 of type ιι be given.
Let x5 of type ιιο be given.
Let x6 of type ιιο be given.
Assume H0: ∀ x7 . x7x0∀ x8 . x8x0x1 x7 x8 = x2 x7 x8.
Assume H1: ∀ x7 . x7x0x3 x7 = x4 x7.
Assume H2: ∀ x7 . x7x0∀ x8 . x8x0iff (x5 x7 x8) (x6 x7 x8).
Claim L3: ...
...
Apply L3 with λ x7 x8 . lam 4 (λ x9 . If_i (x9 = 0) x0 (If_i (x9 = 1) (encode_b x0 x1) (If_i (x9 = 2) (lam x0 x3) (encode_r x0 x5)))) = lam 4 (λ x9 . If_i (x9 = 0) x0 (If_i (x9 = 1) x7 (If_i (x9 = 2) (lam x0 x4) (encode_r x0 x6)))).
Claim L4: lam x0 x3 = lam x0 x4
Apply encode_u_ext with x0, x3, x4.
The subproof is completed by applying H1.
Apply L4 with λ x7 x8 . lam 4 (λ x9 . If_i (x9 = 0) x0 (If_i (x9 = 1) (encode_b x0 x1) (If_i (x9 = 2) (lam x0 x3) (encode_r x0 x5)))) = lam 4 (λ x9 . If_i (x9 = 0) x0 (If_i (x9 = 1) (encode_b x0 x1) (If_i (x9 = 2) x7 (encode_r x0 x6)))).
Claim L5: encode_r x0 x5 = encode_r x0 x6
Apply encode_r_ext with x0, x5, x6.
The subproof is completed by applying H2.
Apply L5 with λ x7 x8 . lam 4 (λ x9 . If_i (x9 = 0) x0 (If_i (x9 = 1) (encode_b x0 x1) (If_i (x9 = 2) (lam x0 x3) (encode_r x0 x5)))) = lam 4 (λ x9 . If_i (x9 = 0) x0 (If_i (x9 = 1) (encode_b x0 x1) (If_i (x9 = 2) (lam x0 x3) x7))).
Let x7 of type ιιο be given.
Assume H6: x7 (lam 4 (λ x8 . If_i (x8 = 0) x0 (If_i (x8 = 1) (encode_b x0 x1) (If_i (x8 = 2) (lam x0 x3) (encode_r x0 x5))))) (lam 4 (λ x8 . If_i (x8 = 0) x0 (If_i (x8 = 1) (encode_b x0 x1) (If_i (x8 = 2) (lam x0 x3) (encode_r x0 x5))))).
The subproof is completed by applying H6.