Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ιιο be given.
Let x1 of type ιιο be given.
Let x2 of type ιιο be given.
Let x3 of type ι be given.
Let x4 of type ι be given.
Let x5 of type ι be given.
Let x6 of type ι be given.
Let x7 of type ι be given.
Let x8 of type ιι be given.
Let x9 of type ιι be given.
Let x10 of type ιιι be given.
Let x11 of type ιιι be given.
Let x12 of type ιιι be given.
Let x13 of type ιο be given.
Let x14 of type ιο be given.
Let x15 of type ιο be given.
Let x16 of type ιο be given.
Let x17 of type ιο be given.
Let x18 of type ιο be given.
Let x19 of type ιο be given.
Let x20 of type ιο be given.
Let x21 of type ιο be given.
Let x22 of type ιο be given.
Let x23 of type ιο be given.
Assume H0: ∀ x24 x25 . iff (x1 x24 x25) (∀ x26 . x0 x26 x24x0 x26 x25).
Assume H1: ∀ x24 . iff (x13 x24) (∃ x25 . and (x0 x25 x24) (not (x1 x24 (x8 x25)))).
Assume H2: ∀ x24 x25 . x0 x25 (x8 x24)x1 x25 x24.
Assume H3: ∀ x24 x25 . (∀ x26 . x0 x26 x24not (x0 x26 x25))x2 x24 x25.
Assume H4: ∀ x24 x25 . not (x0 x25 (x9 x24))not (x25 = x24).
Assume H5: ∀ x24 x25 . x0 x25 x24x11 x24 (x9 x25) = x9 x25.
Assume H6: ∀ x24 x25 . x15 (x10 x24 x25)or (x13 x24) (x14 x25).
Assume H7: not (x1 x5 x3).
Assume H8: not (x0 (x9 x4) x3).
Assume H9: x0 x4 (x8 x5).
Assume H10: x1 (x9 x4) x5.
Assume H11: not (x4 = x9 x4).
Assume H12: not (x0 x3 (x12 (x8 x5) x5)).
Assume H13: not (x0 (x9 x4) (x9 x4)).
Assume H14: not (x0 (x9 x4) (x8 (x9 x5))).
Assume H15: x1 (x9 x4) (x10 (x9 x4) (x9 (x9 x4))).
Assume H16: not (x0 (x9 (x9 x4)) x5).
Assume H17: not (x1 x5 (x12 x6 (x9 x4))).
Assume H18: ∀ x24 . x0 x24 (x9 (x9 x4))x24 = x9 x4.
Assume H19: not (x5 = x8 (x9 x4)).
Assume H20: not (x0 x5 (x10 (x9 x4) (x9 (x9 x4)))).
Assume H21: not (x1 (x12 (x8 x5) (x9 x5)) (x10 (x9 x4) (x9 (x9 x4)))).
Assume H22: not (x0 (x12 x6 (x9 x4)) (x8 x5)).
Assume H23: not (x1 (x12 x6 (x9 x4)) (x9 x5)).
Assume H24: not (x12 (x8 x5) (x8 (x9 x5)) = x8 x5).
Assume H25: x0 (x9 x4) (x10 (x9 (x9 x4)) (x9 (x9 (x9 x4)))).
Assume H26: x0 (x9 (x9 x4)) (x8 (x10 (x9 x4) (x9 (x9 x4)))).
Assume H27: ....
...