Claim L0:
∀ x0 . SNo x0 ⟶ ∀ x1 . SNo x1 ⟶ ∀ x2 x3 : ι → ι → ι . (∀ x4 . x4 ∈ SNoS_ (SNoLev x0) ⟶ ∀ x5 . SNo x5 ⟶ x2 x4 x5 = x3 x4 x5) ⟶ (∀ x4 . x4 ∈ SNoS_ (SNoLev x1) ⟶ x2 x0 x4 = x3 x0 x4) ⟶ (λ x4 x5 . λ x6 : ι → ι → ι . SNoCut (binunion {x6 x7 x5|x7 ∈ SNoL x4} {x6 x4 x7|x7 ∈ SNoL x5}) (binunion {x6 x7 x5|x7 ∈ SNoR x4} {x6 x4 x7|x7 ∈ SNoR x5})) x0 x1 x2 = (λ x4 x5 . λ x6 : ι → ι → ι . SNoCut (binunion {x6 x7 x5|x7 ∈ SNoL x4} {x6 x4 x7|x7 ∈ SNoL x5}) (binunion {x6 x7 x5|x7 ∈ SNoR x4} {x6 x4 x7|x7 ∈ SNoR x5})) x0 x1 x3
Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ι → ι → ι be given.
Let x3 of type ι → ι → ι be given.
Assume H2:
∀ x4 . x4 ∈ SNoS_ (SNoLev x0) ⟶ ∀ x5 . SNo x5 ⟶ x2 x4 x5 = x3 x4 x5.
Assume H3:
∀ x4 . x4 ∈ SNoS_ (SNoLev x1) ⟶ x2 x0 x4 = x3 x0 x4.
Apply SNo_rec2_eq with
λ x0 x1 . λ x2 : ι → ι → ι . SNoCut (binunion {x2 x3 x1|x3 ∈ SNoL x0} {x2 x0 x3|x3 ∈ SNoL x1}) (binunion {x2 x3 x1|x3 ∈ SNoR x0} {x2 x0 x3|x3 ∈ SNoR x1}).
The subproof is completed by applying L0.