Let x0 of type ι be given.
Let x1 of type ι → ο be given.
Assume H0:
∀ x2 . x1 x2 ⟶ ∀ x3 . x3 ∈ x2 ⟶ nIn x0 x3.
Let x2 of type ι → ι be given.
Let x3 of type ι → ι be given.
Let x4 of type ι → ι → ι be given.
Let x5 of type ι → ι → ι be given.
Assume H1: ∀ x6 . x1 x6 ⟶ x1 (x2 x6).
Assume H2: ∀ x6 . x1 x6 ⟶ x1 (x3 x6).
Assume H3: ∀ x6 x7 . x1 x6 ⟶ x1 x7 ⟶ x1 (x4 x6 x7).
Assume H4: ∀ x6 x7 . x1 x6 ⟶ x1 x7 ⟶ x1 (x5 x6 x7).
Assume H5: ∀ x6 x7 . x1 x6 ⟶ x1 x7 ⟶ x2 (x4 x6 x7) = x4 (x2 x6) (x2 x7).
Assume H6: ∀ x6 x7 . x1 x6 ⟶ x1 x7 ⟶ x3 (x4 x6 x7) = x4 (x3 x6) (x3 x7).
Assume H7: ∀ x6 x7 x8 . x1 x6 ⟶ x1 x7 ⟶ x1 x8 ⟶ x4 (x4 x6 x7) x8 = x4 x6 (x4 x7 x8).
Assume H8: ∀ x6 x7 . x1 x6 ⟶ x1 x7 ⟶ x4 x6 x7 = x4 x7 x6.
Assume H9: ∀ x6 x7 x8 . x1 x6 ⟶ x1 x7 ⟶ x1 x8 ⟶ x5 x6 (x4 x7 x8) = x4 (x5 x6 x7) (x5 x6 x8).
Assume H10: ∀ x6 x7 x8 . x1 x6 ⟶ x1 x7 ⟶ x1 x8 ⟶ x5 (x4 x6 x7) x8 = x4 (x5 x6 x8) (x5 x7 x8).
Let x6 of type ι be given.
Let x7 of type ι be given.
Let x8 of type ι be given.