Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ι be given.
Let x3 of type ι → ι → ι be given.
Let x4 of type ι → ι → ι be given.
Let x5 of type ι → ι → ο be given.
Let x6 of type ι be given.
Let x7 of type ι be given.
Let x8 of type ι be given.
Let x9 of type ι → ι → ι be given.
Let x10 of type ι → ι → ι be given.
Let x11 of type ι → ι → ο be given.
Let x12 of type ι → ι be given.
Apply explicit_OrderedField_E with
x0,
x1,
x2,
x3,
x4,
x5,
bij x0 x6 x12 ⟶ x12 x1 = x7 ⟶ x12 x2 = x8 ⟶ (∀ x13 . prim1 x13 x0 ⟶ ∀ x14 . prim1 x14 x0 ⟶ x12 (x3 x13 x14) = x9 (x12 x13) (x12 x14)) ⟶ (∀ x13 . prim1 x13 x0 ⟶ ∀ x14 . prim1 x14 x0 ⟶ x12 (x4 x13 x14) = x10 (x12 x13) (x12 x14)) ⟶ (∀ x13 . prim1 x13 x0 ⟶ ∀ x14 . prim1 x14 x0 ⟶ iff (x5 x13 x14) (x11 (x12 x13) (x12 x14))) ⟶ explicit_OrderedField x6 x7 x8 x9 x10 x11.
Apply explicit_Field_E with
x0,
x1,
x2,
x3,
x4,
(∀ x13 . ... ⟶ ∀ x14 . prim1 x14 ... ⟶ ∀ x15 . prim1 x15 x0 ⟶ x5 x13 x14 ⟶ x5 x14 x15 ⟶ x5 x13 x15) ⟶ (∀ x13 . prim1 x13 x0 ⟶ ∀ x14 . prim1 x14 x0 ⟶ iff (and (x5 x13 x14) (x5 x14 x13)) (x13 = x14)) ⟶ (∀ x13 . prim1 x13 x0 ⟶ ∀ x14 . prim1 x14 x0 ⟶ or (x5 x13 x14) (x5 x14 x13)) ⟶ (∀ x13 . prim1 x13 x0 ⟶ ∀ x14 . prim1 x14 x0 ⟶ ∀ x15 . prim1 x15 x0 ⟶ x5 x13 x14 ⟶ x5 (x3 x13 x15) (x3 x14 x15)) ⟶ (∀ x13 . prim1 x13 x0 ⟶ ∀ x14 . prim1 x14 x0 ⟶ x5 x1 x13 ⟶ x5 x1 x14 ⟶ x5 x1 (x4 x13 x14)) ⟶ bij x0 x6 x12 ⟶ x12 x1 = x7 ⟶ x12 x2 = x8 ⟶ (∀ x13 . prim1 x13 x0 ⟶ ∀ x14 . prim1 x14 x0 ⟶ x12 (x3 x13 x14) = x9 (x12 x13) (x12 x14)) ⟶ (∀ x13 . prim1 x13 x0 ⟶ ∀ x14 . prim1 x14 x0 ⟶ x12 (x4 x13 x14) = x10 (x12 x13) (x12 x14)) ⟶ (∀ x13 . prim1 x13 x0 ⟶ ∀ x14 . prim1 x14 x0 ⟶ iff (x5 x13 x14) (x11 (x12 x13) (x12 x14))) ⟶ explicit_OrderedField x6 x7 x8 x9 x10 x11.