Let x0 of type ι be given.
Let x1 of type ι be given.
Apply H2 with
(x0 = 0 ⟶ ∀ x2 : ο . x2) ⟶ (x1 = 0 ⟶ ∀ x2 : ο . x2) ⟶ (∀ x2 . x2 ∈ x0 ⟶ ∃ x3 . and (x3 ∈ x0) (SNoLt x2 x3)) ⟶ (∀ x2 . x2 ∈ x1 ⟶ ∃ x3 . and (x3 ∈ x1) (SNoLt x3 x2)) ⟶ SNoCut x0 x1 ∈ real.
Assume H3:
and (∀ x2 . x2 ∈ x0 ⟶ SNo x2) (∀ x2 . x2 ∈ x1 ⟶ SNo x2).
Apply H3 with
(∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x1 ⟶ SNoLt x2 x3) ⟶ (x0 = 0 ⟶ ∀ x2 : ο . x2) ⟶ (x1 = 0 ⟶ ∀ x2 : ο . x2) ⟶ (∀ x2 . x2 ∈ x0 ⟶ ∃ x3 . and (x3 ∈ x0) (SNoLt x2 x3)) ⟶ (∀ x2 . x2 ∈ x1 ⟶ ∃ x3 . and (x3 ∈ x1) (SNoLt x3 x2)) ⟶ SNoCut x0 x1 ∈ real.
Assume H4:
∀ x2 . x2 ∈ x0 ⟶ SNo x2.
Assume H5:
∀ x2 . x2 ∈ x1 ⟶ SNo x2.
Assume H6:
∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x1 ⟶ SNoLt x2 x3.
Assume H7: x0 = 0 ⟶ ∀ x2 : ο . x2.
Assume H8: x1 = 0 ⟶ ∀ x2 : ο . x2.
Assume H9:
∀ x2 . x2 ∈ x0 ⟶ ∃ x3 . and (x3 ∈ x0) (SNoLt x2 x3).
Assume H10:
∀ x2 . x2 ∈ x1 ⟶ ∃ x3 . and (x3 ∈ x1) (SNoLt x3 x2).
Apply SNoCutP_SNoCut_impred with
x0,
x1,
SNoCut x0 x1 ∈ real leaving 2 subgoals.
The subproof is completed by applying H2.
Assume H13:
∀ x2 . x2 ∈ x0 ⟶ SNoLt x2 (SNoCut x0 x1).
Assume H14:
∀ x2 . x2 ∈ x1 ⟶ SNoLt (SNoCut x0 x1) x2.
Apply SNoCutP_SNoCut_impred with
famunion omega (λ x2 . (λ x3 . {x4 ∈ SNoS_ x3|∃ x5 . and (x5 ∈ x0) ...}) ...),
...,
... leaving 2 subgoals.