Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ι be given.
Let x3 of type ι be given.
Assume H0: atleastp x2 x3.
Apply H0 with TwoRamseyProp x0 x1 x2TwoRamseyProp x0 x1 x3.
Let x4 of type ιι be given.
Assume H1: inj x2 x3 x4.
Apply H1 with TwoRamseyProp x0 x1 x2TwoRamseyProp x0 x1 x3.
Assume H2: ∀ x5 . x5x2x4 x5x3.
Assume H3: ∀ x5 . x5x2∀ x6 . x6x2x4 x5 = x4 x6x5 = x6.
Assume H4: TwoRamseyProp x0 x1 x2.
Let x5 of type ιιο be given.
Assume H5: ∀ x6 x7 . x5 x6 x7x5 x7 x6.
Claim L6: ...
...
Apply H4 with λ x6 x7 . x5 (x4 x6) (x4 x7), or (∃ x6 . and (x6x3) (and (equip x0 x6) (∀ x7 . x7x6∀ x8 . x8x6(x7 = x8∀ x9 : ο . x9)x5 x7 x8))) (∃ x6 . and (x6x3) (and (equip x1 x6) (∀ x7 . x7x6∀ x8 . x8x6(x7 = x8∀ x9 : ο . x9)not (x5 x7 x8)))) leaving 3 subgoals.
The subproof is completed by applying L6.
Assume H7: ∃ x6 . and (x6x2) (and (equip x0 x6) (∀ x7 . x7x6∀ x8 . x8x6(x7 = x8∀ x9 : ο . x9)x5 (x4 x7) (x4 x8))).
Apply H7 with or (∃ x6 . and (x6x3) (and (equip x0 x6) (∀ x7 . x7x6∀ x8 . x8x6(x7 = x8∀ x9 : ο . x9)x5 x7 x8))) (∃ x6 . and (x6x3) (and (equip x1 x6) (∀ x7 . x7x6∀ x8 . x8x6(x7 = x8∀ x9 : ο . x9)not (x5 x7 x8)))).
Let x6 of type ι be given.
Assume H8: (λ x7 . and (x7x2) (and (equip x0 x7) (∀ x8 . x8x7∀ x9 . x9x7(x8 = x9∀ x10 : ο . x10)x5 (x4 x8) (x4 x9)))) x6.
Apply H8 with or (∃ x7 . and (x7x3) (and (equip x0 x7) (∀ x8 . x8x7∀ x9 . x9x7(x8 = x9∀ x10 : ο . x10)x5 x8 x9))) (∃ x7 . and (x7x3) (and (equip x1 x7) (∀ x8 . ...∀ x9 . ......not ...))).
...
...