Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ι be given.
Let x3 of type ιιι be given.
Let x4 of type ιιι be given.
Let x5 of type ιιο be given.
Let x6 of type ιιι be given.
Assume H0: explicit_Field x0 x1 x2 x3 x4.
Assume H1: ∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0∀ x9 . prim1 x9 x0x3 x7 (x3 x8 x9) = x3 (x3 x7 x8) x9.
Assume H2: ∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0x3 x7 x8 = x3 x8 x7.
Assume H3: prim1 x1 x0.
Assume H4: ∀ x7 . prim1 x7 x0x3 x1 x7 = x7.
Assume H5: ∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0prim1 (x4 x7 x8) x0.
Assume H6: ∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0x4 x7 x8 = x4 x8 x7.
Assume H7: prim1 x2 x0.
Assume H8: x2 = x1∀ x7 : ο . x7.
Assume H9: ∀ x7 . prim1 x7 x0x4 x2 x7 = x7.
Assume H10: explicit_Field_minus x0 x1 x2 x3 x4 x1 = x1.
Assume H11: ∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0prim1 (x6 x7 x8) (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6).
Assume H12: ∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0(λ x9 . prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x9 = x6 x10 x11)))) (x6 x7 x8) = x7.
Assume H13: ∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0(λ x9 . prim0 (λ x10 . and (prim1 x10 x0) (x9 = x6 ((λ x11 . prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x11 = x6 x12 x13)))) x9) x10))) (x6 x7 x8) = x8.
Assume H14: ∀ x7 . prim1 x7 (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6)prim1 ((λ x8 . prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x8 = x6 x9 x10)))) x7) x0.
Assume H15: ∀ x7 . ...prim1 ((λ x8 . prim0 (λ x9 . and (prim1 x9 x0) (x8 = x6 ((λ x10 . prim0 (λ x11 . and (prim1 ... ...) ...)) ...) ...))) ...) ....
...