Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ιι be given.
Let x2 of type ιιι be given.
Let x3 of type ιιιι be given.
Let x4 of type ιιιιι be given.
Let x5 of type ιιιιιι be given.
Let x6 of type ιιιιιιι be given.
Let x7 of type ιιιιιιιο be given.
Let x8 of type ιιιιιιιι be given.
Let x9 of type ι be given.
Assume H0: prim1 x9 (e5d4c.. x0 x1 x2 x3 x4 x5 x6 x7 x8).
Let x10 of type ο be given.
Assume H1: ∀ x11 . prim1 x11 x0∀ x12 . prim1 x12 (x1 x11)∀ x13 . prim1 x13 (x2 x11 x12)∀ x14 . prim1 x14 (x3 x11 x12 x13)∀ x15 . prim1 x15 (x4 x11 x12 x13 x14)∀ x16 . prim1 x16 (x5 x11 x12 x13 x14 x15)∀ x17 . prim1 x17 (x6 x11 x12 x13 x14 x15 x16)x7 x11 x12 x13 x14 x15 x16 x17x9 = x8 x11 x12 x13 x14 x15 x16 x17x10.
Apply UnionE_impred with 94f9e.. x0 (λ x11 . 6cd44.. (x1 x11) (x2 x11) (x3 x11) (x4 x11) (x5 x11) (x6 x11) (x7 x11) (x8 x11)), x9, x10 leaving 2 subgoals.
The subproof is completed by applying H0.
Let x11 of type ι be given.
Assume H2: prim1 x9 x11.
Assume H3: prim1 x11 (94f9e.. x0 (λ x12 . 6cd44.. (x1 x12) (x2 x12) (x3 x12) (x4 x12) (x5 x12) (x6 x12) (x7 x12) (x8 x12))).
Apply unknownprop_d908b89102f7b662c739e5a844f67efc8ae1cd05a2e9ce1e3546fa3885f40100 with x0, λ x12 . 6cd44.. (x1 x12) (x2 x12) (x3 x12) (x4 x12) (x5 x12) (x6 x12) (x7 x12) (x8 x12), x11, x10 leaving 2 subgoals.
The subproof is completed by applying H3.
Let x12 of type ι be given.
Assume H4: prim1 x12 x0.
Assume H5: x11 = 6cd44.. (x1 x12) (x2 x12) (x3 x12) (x4 x12) (x5 x12) (x6 x12) (x7 x12) (x8 x12).
Claim L6: ...
...
Apply unknownprop_8ed5ef1390eae1529639ddf6c238e18ede5125e6622c691c2992c6b0424f0940 with x1 x12, x2 x12, x3 x12, x4 x12, x5 x12, x6 x12, x7 x12, x8 x12, x9, x10 leaving 2 subgoals.
The subproof is completed by applying L6.
Let x13 of type ι be given.
Assume H7: prim1 x13 (x1 x12).
Let x14 of type ι be given.
Assume H8: prim1 x14 (x2 x12 x13).
Let x15 of type ι be given.
Assume H9: prim1 x15 (x3 x12 x13 x14).
Let x16 of type ι be given.
Assume H10: prim1 x16 (x4 x12 x13 x14 x15).
Let x17 of type ι be given.
Assume H11: prim1 x17 (x5 x12 x13 x14 x15 x16).
Let x18 of type ι be given.
Assume H12: prim1 x18 (x6 x12 x13 x14 x15 x16 x17).
Assume H13: x7 x12 x13 x14 x15 x16 x17 x18.
Assume H14: x9 = x8 x12 x13 x14 ... ... ... ....
...