Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ιιι be given.
Let x2 of type ιι be given.
Let x3 of type ιο be given.
Let x4 of type ιο be given.
Assume H0: 303f6.. (3da2d.. x0 x1 x2 x3 x4).
Apply H0 with λ x5 . x5 = 3da2d.. x0 x1 x2 x3 x4∀ x6 . prim1 x6 x0∀ x7 . prim1 x7 x0prim1 (x1 x6 x7) x0 leaving 2 subgoals.
Let x5 of type ι be given.
Let x6 of type ιιι be given.
Assume H1: ∀ x7 . prim1 x7 x5∀ x8 . prim1 x8 x5prim1 (x6 x7 x8) x5.
Let x7 of type ιι be given.
Assume H2: ∀ x8 . prim1 x8 x5prim1 (x7 x8) x5.
Let x8 of type ιο be given.
Let x9 of type ιο be given.
Assume H3: 3da2d.. x5 x6 x7 x8 x9 = 3da2d.. x0 x1 x2 x3 x4.
Apply unknownprop_9a81aeca596e13270366b808350b8921910dc3dae9ac232f0d68f67d93504f2d with x5, x0, x6, x1, x7, x2, x8, x3, x9, x4, ∀ x10 . prim1 x10 x0∀ x11 . prim1 x11 x0prim1 (x1 x10 x11) x0 leaving 2 subgoals.
The subproof is completed by applying H3.
Assume H4: and (and (and (x5 = x0) (∀ x10 . prim1 x10 x5∀ x11 . prim1 x11 x5x6 x10 x11 = x1 x10 x11)) (∀ x10 . prim1 x10 x5x7 x10 = x2 x10)) (∀ x10 . prim1 x10 x5x8 x10 = x3 x10).
Apply H4 with (∀ x10 . prim1 x10 x5x9 x10 = x4 x10)∀ x10 . prim1 x10 x0∀ x11 . prim1 x11 x0prim1 (x1 x10 x11) x0.
Assume H5: and (and (x5 = x0) (∀ x10 . prim1 x10 x5∀ x11 . prim1 x11 x5x6 x10 x11 = x1 x10 x11)) (∀ x10 . prim1 x10 x5x7 x10 = x2 x10).
Apply H5 with (∀ x10 . prim1 x10 x5x8 x10 = x3 x10)(∀ x10 . prim1 x10 x5x9 x10 = x4 x10)∀ x10 . prim1 x10 x0∀ x11 . prim1 x11 x0prim1 (x1 x10 x11) x0.
Assume H6: and (x5 = x0) (∀ x10 . prim1 x10 x5∀ x11 . prim1 x11 x5x6 x10 x11 = x1 x10 x11).
Apply H6 with ...(∀ x10 . ...x8 x10 = x3 x10)(∀ x10 . prim1 x10 x5x9 x10 = x4 x10)∀ x10 . prim1 x10 x0∀ x11 . prim1 x11 x0prim1 (x1 x10 x11) x0.
...
...