Let x0 of type ι → ο be given.
Let x1 of type ι be given.
Let x2 of type ι be given.
Let x3 of type ι be given.
Let x4 of type ι be given.
Let x5 of type ι be given.
Let x6 of type ι be given.
Assume H0: ∀ x7 : ι → ο . x7 x1 ⟶ x7 x2 ⟶ x7 x3 ⟶ x7 x4 ⟶ x7 x5 ⟶ x7 x6 ⟶ ∀ x8 . x0 x8 ⟶ x7 x8.
Assume H1: x0 x1.
Assume H2: x0 x2.
Assume H3: x0 x3.
Assume H4: x0 x4.
Assume H5: x0 x5.
Assume H6: x0 x6.
Let x7 of type ι → ι → ι → ι → ο be given.
Assume H7:
∀ x8 . x0 x8 ⟶ ∀ x9 . x0 x9 ⟶ not (x7 x8 x2 x9 x1).
Assume H8:
∀ x8 . x0 x8 ⟶ ∀ x9 . x0 x9 ⟶ not (x7 x8 x3 x9 x1).
Assume H9:
∀ x8 . x0 x8 ⟶ ∀ x9 . x0 x9 ⟶ not (x7 x8 x4 x9 x1).
Assume H10:
∀ x8 . x0 x8 ⟶ ∀ x9 . x0 x9 ⟶ not (x7 x8 x5 x9 x1).
Assume H11:
∀ x8 . x0 x8 ⟶ ∀ x9 . x0 x9 ⟶ not (x7 x8 x6 x9 x1).
Assume H12:
∀ x8 . x0 x8 ⟶ ∀ x9 . x0 x9 ⟶ not (x7 x8 x3 x9 x2).
Assume H13:
∀ x8 . x0 x8 ⟶ ∀ x9 . x0 x9 ⟶ not (x7 x8 x4 x9 x2).
Assume H14:
∀ x8 . x0 x8 ⟶ ∀ x9 . x0 x9 ⟶ not (x7 x8 x5 x9 x2).
Assume H15:
∀ x8 . x0 x8 ⟶ ∀ x9 . x0 x9 ⟶ not (x7 x8 x6 x9 x2).
Assume H16:
∀ x8 . x0 x8 ⟶ ∀ x9 . x0 x9 ⟶ not (x7 x8 x4 x9 x3).
Assume H17:
∀ x8 . x0 x8 ⟶ ∀ x9 . x0 x9 ⟶ not (x7 x8 x5 x9 x3).
Assume H18:
∀ x8 . x0 x8 ⟶ ∀ x9 . x0 x9 ⟶ not (x7 x8 x6 x9 x3).
Assume H19:
∀ x8 . x0 x8 ⟶ ∀ x9 . x0 x9 ⟶ not (x7 x8 x5 x9 x4).
Assume H20:
∀ x8 . x0 x8 ⟶ ∀ x9 . x0 x9 ⟶ not (x7 x8 x6 x9 x4).
Assume H21:
∀ x8 . x0 x8 ⟶ ∀ x9 . x0 x9 ⟶ not (x7 x8 x6 x9 x5).
Assume H22:
∀ x8 . x0 x8 ⟶ not (x7 x1 x8 x1 x8).
Assume H23:
∀ x8 . x0 x8 ⟶ not (x7 x2 x8 x1 x8).
Assume H24:
∀ x8 . ... ⟶ not (x7 x3 x8 x1 ...).