Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ιιι be given.
Let x3 of type ιιι be given.
Let x4 of type ιιι be given.
Let x5 of type ιιι be given.
Let x6 of type ι be given.
Let x7 of type ι be given.
Let x8 of type ι be given.
Let x9 of type ι be given.
Let x10 of type ι be given.
Claim L0: ...
...
Claim L1: ...
...
set y11 to be ...
set y12 to be ...
Claim L2: ∀ x13 : ο → ο . x13 y12x13 y11
Let x13 of type οο be given.
Assume H2: x13 ((λ x14 . λ x15 x16 : ι → ι → ι . λ x17 x18 x19 . λ x20 x21 : ι → ι → ι . λ x22 x23 . and (and (and (and (y12setexp x19 x14) (∀ x24 . x24x14∀ x25 . x25x14ap y12 (x15 x24 x25) = x20 (ap y12 x24) (ap y12 x25))) (∀ x24 . x24x14∀ x25 . x25x14ap y12 (x16 x24 x25) = x21 (ap y12 x24) (ap y12 x25))) (ap y12 x17 = x22)) (ap y12 x18 = x23)) x2 x4 x5 x8 x9 x3 x6 x7 x10 y11).
Apply unpack_b_b_e_e_o_eq with λ x14 . λ x15 x16 : ι → ι → ι . λ x17 x18 . unpack_b_b_e_e_o (pack_b_b_e_e x3 x6 x7 x10 y11) (λ x19 . λ x20 x21 : ι → ι → ι . λ x22 x23 . (λ x24 . λ x25 x26 : ι → ι → ι . λ x27 x28 x29 . λ x30 x31 : ι → ι → ι . λ x32 x33 . and (and (and (and (y12setexp x29 x24) (∀ x34 . x34x24∀ x35 . x35x24ap y12 (x25 x34 x35) = x30 (ap y12 x34) (ap y12 x35))) (∀ x34 . x34x24∀ x35 . x35x24ap y12 (x26 x34 x35) = x31 (ap y12 x34) (ap y12 x35))) (ap y12 x27 = x32)) (ap y12 x28 = x33)) x14 x15 x16 x17 x18 x19 x20 x21 x22 x23), x2, x4, x5, x8, x9, λ x14 : ο . x13 leaving 2 subgoals.
The subproof is completed by applying L1.
Apply unpack_b_b_e_e_o_eq with (λ x14 . λ x15 x16 : ι → ι → ι . λ x17 x18 x19 . λ x20 x21 : ι → ι → ι . λ x22 x23 . and (and (and (and (y12setexp x19 x14) (∀ x24 . x24x14∀ x25 . x25x14ap y12 (x15 x24 x25) = x20 (ap y12 x24) (ap y12 x25))) (∀ x24 . x24x14∀ x25 . x25x14ap y12 (x16 x24 x25) = x21 (ap y12 x24) (ap y12 x25))) (ap y12 x17 = x22)) (ap y12 x18 = x23)) x2 x4 ... ... ..., ..., ..., ..., ..., ..., ... leaving 2 subgoals.
...
...
Let x13 of type οοο be given.
Apply L2 with λ x14 : ο . x13 x14 y12x13 y12 x14.
Assume H3: x13 y12 y12.
The subproof is completed by applying H3.