Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ι be given.
Assume H0: SNoCutP x0 x1.
Apply SNoCutP_SNoCut with x0, x1, ∀ x2 . x2x0SNoLt x2 (SNoCut x0 x1) leaving 2 subgoals.
The subproof is completed by applying H0.
Assume H1: and (and (and (SNo (SNoCut x0 x1)) (SNoLev (SNoCut x0 x1)ordsucc (binunion (famunion x0 (λ x2 . ordsucc (SNoLev x2))) (famunion x1 (λ x2 . ordsucc (SNoLev x2)))))) (∀ x2 . x2x0SNoLt x2 (SNoCut x0 x1))) (∀ x2 . x2x1SNoLt (SNoCut x0 x1) x2).
Assume H2: ∀ x2 . SNo x2(∀ x3 . x3x0SNoLt x3 x2)(∀ x3 . x3x1SNoLt x2 x3)and (SNoLev (SNoCut x0 x1)SNoLev x2) (SNoEq_ (SNoLev (SNoCut x0 x1)) (SNoCut x0 x1) x2).
Apply H1 with ∀ x2 . x2x0SNoLt x2 (SNoCut x0 x1).
Assume H3: and (and (SNo (SNoCut x0 x1)) (SNoLev (SNoCut x0 x1)ordsucc (binunion (famunion x0 (λ x2 . ordsucc (SNoLev x2))) (famunion x1 (λ x2 . ordsucc (SNoLev x2)))))) (∀ x2 . x2x0SNoLt x2 (SNoCut x0 x1)).
Assume H4: ∀ x2 . x2x1SNoLt (SNoCut x0 x1) x2.
Apply H3 with ∀ x2 . x2x0SNoLt x2 (SNoCut x0 x1).
Assume H5: and (SNo (SNoCut x0 x1)) (SNoLev (SNoCut x0 x1)ordsucc (binunion (famunion x0 (λ x2 . ordsucc (SNoLev x2))) (famunion x1 (λ x2 . ordsucc (SNoLev x2))))).
Assume H6: ∀ x2 . x2x0SNoLt x2 (SNoCut x0 x1).
The subproof is completed by applying H6.