Search for blocks/addresses/...
Proofgold Proof
pf
Let x0 of type
ι
be given.
Let x1 of type
ι
be given.
Let x2 of type
ι
be given.
Assume H0:
Field_Hom
x0
x1
x2
.
Let x3 of type
ο
be given.
Assume H1:
Field
x0
⟶
Field
x1
⟶
x2
∈
setexp
(
field0
x1
)
(
field0
x0
)
⟶
ap
x2
(
field3
x0
)
=
field3
x1
⟶
ap
x2
(
field4
x0
)
=
field4
x1
⟶
(
∀ x4 .
x4
∈
field0
x0
⟶
∀ x5 .
x5
∈
field0
x0
⟶
ap
x2
(
field1b
x0
x4
x5
)
=
field1b
x1
(
ap
x2
x4
)
(
ap
x2
x5
)
)
⟶
(
∀ x4 .
x4
∈
field0
x0
⟶
∀ x5 .
x5
∈
field0
x0
⟶
ap
x2
(
field2b
x0
x4
x5
)
=
field2b
x1
(
ap
x2
x4
)
(
ap
x2
x5
)
)
⟶
(
∀ x4 .
x4
∈
field0
x0
⟶
ap
x2
(
Field_minus
x0
x4
)
=
Field_minus
x1
(
ap
x2
x4
)
)
⟶
(
∀ x4 .
x4
∈
field0
x0
⟶
ap
x2
x4
=
field3
x1
⟶
x4
=
field3
x0
)
⟶
(
∀ x4 .
x4
∈
field0
x0
⟶
∀ x5 .
x5
∈
field0
x0
⟶
ap
x2
x4
=
ap
x2
x5
⟶
x4
=
x5
)
⟶
(
∀ x4 .
x4
∈
field0
x0
⟶
∀ x5 .
x5
∈
omega
⟶
ap
x2
(
CRing_with_id_omega_exp
x0
x4
x5
)
=
CRing_with_id_omega_exp
x1
(
ap
x2
x4
)
x5
)
⟶
x3
.
Apply and7E with
Field
x0
,
Field
x1
,
x2
∈
setexp
(
field0
x1
)
(
field0
x0
)
,
ap
x2
(
field3
x0
)
=
field3
x1
,
ap
x2
(
field4
x0
)
=
field4
x1
,
∀ x4 .
x4
∈
field0
x0
⟶
∀ x5 .
x5
∈
field0
x0
⟶
ap
x2
(
field1b
x0
x4
x5
)
=
field1b
x1
(
ap
x2
x4
)
(
ap
x2
x5
)
,
∀ x4 .
x4
∈
field0
x0
⟶
∀ x5 .
x5
∈
field0
x0
⟶
ap
x2
(
field2b
x0
x4
x5
)
=
field2b
x1
(
ap
x2
x4
)
(
ap
x2
x5
)
,
x3
leaving 2 subgoals.
The subproof is completed by applying H0.
Assume H2:
Field
x0
.
Assume H3:
Field
x1
.
Assume H4:
x2
∈
setexp
(
field0
x1
)
(
field0
x0
)
.
Assume H5:
ap
x2
(
field3
x0
)
=
field3
x1
.
Assume H6:
ap
x2
(
field4
x0
)
=
field4
x1
.
Assume H7:
∀ x4 .
...
⟶
∀ x5 .
...
⟶
ap
x2
(
field1b
x0
x4
x5
)
=
field1b
x1
...
...
.
...
■