Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type (ιο) → ο be given.
Let x2 of type (ιο) → ο be given.
Let x3 of type ι be given.
Assume H0: ∀ x4 : ι → ο . (∀ x5 . x4 x5prim1 x5 x0)iff (x1 x4) (x2 x4).
Claim L1: e0e40.. x0 x1 = e0e40.. x0 x2
Apply unknownprop_35ee954b0de81ace4d484d57278ef6dea3fd2cb486e752fb5784dfc8cd9b7c4a with x0, x1, x2.
The subproof is completed by applying H0.
Apply L1 with λ x4 x5 . 0fc90.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) (λ x6 . If_i (x6 = 4a7ef..) x0 (If_i (x6 = 4ae4a.. 4a7ef..) (e0e40.. x0 x1) x3)) = 0fc90.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) (λ x6 . If_i (x6 = 4a7ef..) x0 (If_i (x6 = 4ae4a.. 4a7ef..) x4 x3)).
Let x4 of type ιιο be given.
Assume H2: x4 (0fc90.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) (λ x5 . If_i (x5 = 4a7ef..) x0 (If_i (x5 = 4ae4a.. 4a7ef..) (e0e40.. x0 x1) x3))) (0fc90.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) (λ x5 . If_i (x5 = 4a7ef..) x0 (If_i (x5 = 4ae4a.. 4a7ef..) (e0e40.. x0 x1) x3))).
The subproof is completed by applying H2.