Let x0 of type ι → ι → ο be given.
Let x1 of type ι → ι be given.
Let x2 of type ι → ι → ο be given.
Let x3 of type ι → ι → ι → ι → ι → ο be given.
Let x4 of type ι → ι → ι → ι be given.
Let x5 of type ι → ι → ο be given.
Let x6 of type ι → ο be given.
Let x7 of type ι → ι be given.
Let x8 of type ι → ο be given.
Let x9 of type ι → ο be given.
Let x10 of type ι → ι be given.
Let x11 of type ι → ι be given.
Let x12 of type ι be given.
Let x13 of type ι → ι → ι be given.
Let x14 of type ι → ι → ι be given.
Let x15 of type ι → ι → ι → ι → ι be given.
Let x16 of type ι → ι → ο be given.
Let x17 of type ι be given.
Let x18 of type ι be given.
Let x19 of type ι → ο be given.
Let x20 of type ι be given.
Let x21 of type ι be given.
Let x22 of type ι be given.
Let x23 of type ι be given.
Let x24 of type ι be given.
Let x25 of type ι be given.
Let x26 of type ι be given.
Let x27 of type ι → ι be given.
Let x28 of type ι → ο be given.
Let x29 of type ι → ο be given.
Let x30 of type ι → ι → ι → ι be given.
Let x31 of type ι be given.
Let x32 of type ι → ι → ι → ι → ι be given.
Let x33 of type ι → ι → ο be given.
Let x34 of type ι → ο be given.
Let x35 of type ι → ι be given.
Let x36 of type ι → ι → ι → ι → ο be given.
Let x37 of type ι → ο be given.
Let x38 of type ι → ο be given.
Let x39 of type ι be given.
Let x40 of type ι → ο be given.
Assume H5:
∀ x41 x42 . x40 x42 ⟶ (x42 = x41 ⟶ False) ⟶ x40 x41 ⟶ False.
Assume H6:
∀ x41 x42 . x0 x41 x42 ⟶ x40 x42 ⟶ False.
Assume H7:
∀ x41 . x40 x41 ⟶ (x41 = x39 ⟶ False) ⟶ False.
Assume H8:
∀ x41 x42 x43 . x0 x41 x42 ⟶ x2 x42 (x1 x43) ⟶ x40 x43 ⟶ False.
Assume H9:
∀ x41 x42 x43 x44 x45 x46 . (x38 x46 ⟶ False) ⟶ x34 x46 ⟶ x37 x46 ⟶ x2 x41 (x35 x46) ⟶ x2 x45 (x35 x46) ⟶ x2 x42 (x35 x46) ⟶ x2 x44 (x35 x46) ⟶ x2 x43 (x35 x46) ⟶ x36 x46 x41 x45 x44 ⟶ x36 x46 x41 x42 x43 ⟶ x44 = x43 ⟶ (x36 x46 x41 x45 x42 ⟶ False) ⟶ (x43 = x41 ⟶ False) ⟶ False.
Assume H10:
∀ x41 x42 x43 x44 x45 x46 . (x38 x46 ⟶ False) ⟶ x34 x46 ⟶ x37 x46 ⟶ x2 x41 (x35 x46) ⟶ x2 x45 (x35 x46) ⟶ x2 x42 (x35 x46) ⟶ x2 x44 (x35 x46) ⟶ x2 x43 (x35 x46) ⟶ x36 x46 x41 x45 x44 ⟶ x36 x46 x41 x42 x43 ⟶ x44 = x43 ⟶ (x36 x46 x41 x45 x42 ⟶ False) ⟶ (x44 = x41 ⟶ False) ⟶ False.
Assume H11:
∀ x41 x42 x43 . x0 x42 x43 ⟶ x2 x43 (x1 x41) ⟶ (x2 x42 x41 ⟶ False) ⟶ False.
Assume H12:
∀ x41 x42 x43 x44 x45 . (x38 x45 ⟶ False) ⟶ x34 x45 ⟶ x37 x45 ⟶ x2 x41 (x35 x45) ⟶ x2 x44 (x35 x45) ⟶ x2 x42 (x35 x45) ⟶ x2 x43 (x35 x45) ⟶ x3 x45 x41 x44 x42 x43 ⟶ (x3 x45 x43 x42 x44 x41 ⟶ False) ⟶ False.
Assume H13:
∀ x41 x42 x43 x44 x45 . (x38 x45 ⟶ False) ⟶ x34 x45 ⟶ x37 x45 ⟶ x2 x41 (x35 x45) ⟶ x2 x44 (x35 x45) ⟶ x2 x42 (x35 x45) ⟶ x2 x43 (x35 x45) ⟶ x3 x45 x41 x44 x42 x43 ⟶ (x3 x45 x43 x42 x41 x44 ⟶ False) ⟶ False.