Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ι be given.
Let x3 of type ι → ι → ι be given.
Let x4 of type ι → ι → ι be given.
Let x5 of type ι → ι → ο be given.
Let x6 of type ο be given.
Apply and3E with
explicit_OrderedField x0 x1 x2 x3 x4 x5,
∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ lt x0 x1 x2 x3 x4 x5 x1 x7 ⟶ x5 x1 x8 ⟶ ∃ x9 . and (x9 ∈ {x10 ∈ x0|natOfOrderedField_p x0 x1 x2 x3 x4 x5 x10}) (x5 x8 (x4 x9 x7)),
∀ x7 . ... ⟶ ∀ x8 . ... ⟶ (∀ x9 . ... ⟶ and (and (x5 (ap x7 x9) (ap x8 x9)) (x5 (ap x7 x9) (ap x7 (x3 x9 x2)))) (x5 (ap ... ...) ...)) ⟶ ∃ x9 . and (x9 ∈ x0) (∀ x10 . x10 ∈ {x11 ∈ x0|natOfOrderedField_p x0 x1 x2 x3 x4 x5 x11} ⟶ and (x5 (ap x7 x10) x9) (x5 x9 (ap x8 x10))),
... leaving 2 subgoals.