Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ι be given.
Let x3 of type ιιι be given.
Let x4 of type ιιι be given.
Let x5 of type ιιο be given.
Let x6 of type ο be given.
Assume H0: explicit_Reals x0 x1 x2 x3 x4 x5explicit_OrderedField x0 x1 x2 x3 x4 x5(∀ x7 . x7x0∀ x8 . x8x0lt x0 x1 x2 x3 x4 x5 x1 x7x5 x1 x8∃ x9 . and (x9{x10 ∈ x0|natOfOrderedField_p x0 x1 x2 x3 x4 x5 x10}) (x5 x8 (x4 x9 x7)))(∀ x7 . x7setexp x0 {x8 ∈ x0|natOfOrderedField_p x0 x1 x2 x3 x4 x5 x8}∀ x8 . x8setexp x0 {x9 ∈ x0|natOfOrderedField_p x0 x1 x2 x3 x4 x5 x9}(∀ x9 . x9{x10 ∈ x0|natOfOrderedField_p x0 x1 x2 x3 x4 x5 x10}and (and (x5 (ap x7 x9) (ap x8 x9)) (x5 (ap x7 x9) (ap x7 (x3 x9 x2)))) (x5 (ap x8 (x3 x9 x2)) (ap x8 x9)))∃ x9 . and (x9x0) (∀ x10 . x10{x11 ∈ x0|natOfOrderedField_p x0 x1 x2 x3 x4 x5 x11}and (x5 (ap x7 x10) x9) (x5 x9 (ap x8 x10))))x6.
Assume H1: explicit_Reals x0 x1 x2 x3 x4 x5.
Apply and3E with explicit_OrderedField x0 x1 x2 x3 x4 x5, ∀ x7 . x7x0∀ x8 . x8x0lt x0 x1 x2 x3 x4 x5 x1 x7x5 x1 x8∃ x9 . and (x9{x10 ∈ x0|natOfOrderedField_p x0 x1 x2 x3 x4 x5 x10}) (x5 x8 (x4 x9 x7)), ∀ x7 . ...∀ x8 . ...(∀ x9 . ...and (and (x5 (ap x7 x9) (ap x8 x9)) (x5 (ap x7 x9) (ap x7 (x3 x9 x2)))) (x5 (ap ... ...) ...))∃ x9 . and (x9x0) (∀ x10 . x10{x11 ∈ x0|natOfOrderedField_p x0 x1 x2 x3 x4 x5 x11}and (x5 (ap x7 x10) x9) (x5 x9 (ap x8 x10))), ... leaving 2 subgoals.
...
...