Let x0 of type ι be given.
Let x1 of type ι → ι → ι be given.
Let x2 of type ι → ι → ι be given.
Let x3 of type ι → ι → ι be given.
Let x4 of type ι be given.
Let x5 of type ι → ι → ι be given.
Let x6 of type ι → ι → ι → ι be given.
Let x7 of type ι → ι → ι be given.
Let x8 of type ι → ι → ι → ι be given.
Let x9 of type ι → ι → ι → ι be given.
Let x10 of type ι → ι → ι be given.
Let x11 of type ι → ι → ι be given.
Let x12 of type ι → ι → ι be given.
Let x13 of type ι → ι → ι be given.
Assume H2:
∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ x9 x14 x15 (x7 x14 (x12 x15 (x9 x14 x15 (x7 x14 (x12 x15 x16))))) = x16.
Assume H3:
∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ x9 x14 x15 (x7 x14 (x7 x15 (x9 x14 x15 (x7 x14 (x7 x15 (x9 x14 x15 (x7 x14 (x7 x15 x16)))))))) = x16.
Assume H4:
∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ x12 x14 (x13 x15 (x12 x16 x17)) = x13 x15 (x12 x16 (x12 x14 x17)).
Assume H5:
∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ ∀ x18 . In x18 x0 ⟶ x8 x14 x15 (x12 x16 (x13 x17 x18)) = x12 x16 (x13 x17 (x8 x14 x15 x18)).
Assume H6:
∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ ∀ x18 . In x18 x0 ⟶ x12 x14 (x7 x15 (x7 x16 (x12 x17 x18))) = x7 x16 (x12 x17 (x12 x14 (x7 x15 x18))).
Assume H7:
∀ x14 . In x14 x0 ⟶ ∀ x15 . In x15 x0 ⟶ ∀ x16 . In x16 x0 ⟶ ∀ x17 . In x17 x0 ⟶ ∀ x18 . In x18 x0 ⟶ x12 x14 (x12 x15 (x10 x16 (x12 x17 x18))) = x10 x16 (x12 x17 (x12 x14 (x12 x15 x18))).
Assume H8: ∀ x14 . ... ⟶ ∀ x15 . ... ⟶ ∀ x16 . ... ⟶ ∀ x17 . ... ⟶ ∀ x18 . ... ⟶ x12 x14 (x10 x15 (x12 x16 (x12 x17 x18))) = x12 ... ....