Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ι be given.
Let x3 of type ι be given.
Apply binunion_asso with UPair x0 x1, Sing x2, Sing x3, λ x4 x5 . x4 = binunion (binunion (UPair x0 x1) (Sing x3)) (Sing x2).
Apply binunion_asso with UPair x0 x1, Sing x3, Sing x2, λ x4 x5 . binunion (UPair x0 x1) (binunion (Sing x2) (Sing x3)) = x4.
set y4 to be binunion (UPair x0 x1) (binunion (Sing x2) (Sing x3))
set y5 to be binunion (UPair x1 x2) (binunion (Sing y4) (Sing x3))
Claim L0: ∀ x6 : ι → ο . x6 y5x6 y4
Let x6 of type ιο be given.
Assume H0: x6 (binunion (UPair x2 x3) (binunion (Sing y5) (Sing y4))).
set y7 to be λ x7 . x6
Apply binunion_com with Sing y4, Sing y5, λ x8 x9 . y7 (binunion (UPair x2 x3) x8) (binunion (UPair x2 x3) x9).
The subproof is completed by applying H0.
Let x6 of type ιιο be given.
Apply L0 with λ x7 . x6 x7 y5x6 y5 x7.
Assume H1: x6 y5 y5.
The subproof is completed by applying H1.