Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ι be given.
Let x3 of type ι be given.
Apply binunion_asso with
UPair x0 x1,
Sing x2,
Sing x3,
λ x4 x5 . x4 = binunion (binunion (UPair x0 x1) (Sing x3)) (Sing x2).
Apply binunion_asso with
UPair x0 x1,
Sing x3,
Sing x2,
λ x4 x5 . binunion (UPair x0 x1) (binunion (Sing x2) (Sing x3)) = x4.
Claim L0: ∀ x6 : ι → ο . x6 y5 ⟶ x6 y4
Let x6 of type ι → ο be given.
set y7 to be λ x7 . x6
Let x6 of type ι → ι → ο be given.
Apply L0 with
λ x7 . x6 x7 y5 ⟶ x6 y5 x7.
Assume H1: x6 y5 y5.
The subproof is completed by applying H1.