Search for blocks/addresses/...
Proofgold Proof
pf
Claim L0:
...
...
Let x0 of type
ι
be given.
Assume H1:
x0
∈
u16
.
Let x1 of type
ι
be given.
Apply unknownprop_485b5a544f4a752392d62c01e55a5e36a8748d64fd7af6f27349bd2453284446 with
x0
,
λ x2 .
x1
∈
x2
⟶
TwoRamseyGraph_3_6_17
(
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
x2
)
(
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
x1
)
⟶
TwoRamseyGraph_3_6_17
x2
x1
leaving 17 subgoals.
The subproof is completed by applying H1.
Assume H2:
x1
∈
0
.
Apply FalseE with
TwoRamseyGraph_3_6_17
(
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
0
)
(
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
x1
)
⟶
TwoRamseyGraph_3_6_17
0
x1
.
Apply EmptyE with
x1
.
The subproof is completed by applying H2.
Assume H2:
x1
∈
u1
.
Apply cases_1 with
x1
,
λ x2 .
TwoRamseyGraph_3_6_17
(
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
u1
)
(
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
x2
)
⟶
TwoRamseyGraph_3_6_17
u1
x2
leaving 2 subgoals.
The subproof is completed by applying H2.
Assume H3:
TwoRamseyGraph_3_6_17
(
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
u1
)
(
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
0
)
.
Assume H4:
u1
∈
u17
.
Assume H5:
0
∈
u17
.
Apply unknownprop_f880a8473dab9f58d69fbf332c8547d500ca315e405258a93c99a34f8560efb6 with
λ x2 x3 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
TwoRamseyGraph_3_6_Church17
x3
(
u17_to_Church17
0
)
=
λ x4 x5 .
x4
.
Apply unknownprop_84aaefca7211a57d89e0df96a1f742653d3cc05f82d5ab568090ade3cb9ffcfd with
λ x2 x3 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
TwoRamseyGraph_3_6_Church17
(
λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 .
x5
)
x3
=
λ x4 x5 .
x4
.
Let x2 of type
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
ο
be given.
Assume H6:
x2
(
TwoRamseyGraph_3_6_Church17
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 .
x4
)
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 .
x3
)
)
(
λ x3 x4 .
x3
)
.
The subproof is completed by applying H6.
Assume H2:
x1
∈
u2
.
Apply cases_2 with
x1
,
λ x2 .
TwoRamseyGraph_3_6_17
(
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
u2
)
(
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
x2
)
⟶
TwoRamseyGraph_3_6_17
u2
x2
leaving 3 subgoals.
The subproof is completed by applying H2.
Assume H3:
TwoRamseyGraph_3_6_17
(
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
u2
)
(
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
0
)
.
Assume H4:
u2
∈
u17
.
Assume H5:
0
∈
u17
.
Apply unknownprop_7c154441ca7b7a9fe09539322ad6531c3f48333c7018e2f8c866c0af44719d1a with
λ x2 x3 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
TwoRamseyGraph_3_6_Church17
x3
(
u17_to_Church17
0
)
=
λ x4 x5 .
x4
.
Apply unknownprop_84aaefca7211a57d89e0df96a1f742653d3cc05f82d5ab568090ade3cb9ffcfd with
λ x2 x3 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
TwoRamseyGraph_3_6_Church17
(
λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 .
x6
)
x3
=
λ x4 x5 .
x4
.
Let x2 of type
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
ο
be given.
Assume H6:
x2
(
TwoRamseyGraph_3_6_Church17
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 .
x5
)
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 .
x3
)
)
(
λ x3 x4 .
x3
)
.
The subproof is completed by applying H6.
Apply unknownprop_5f23a09617e395d3412bcd886825a830fcbca9dbfaa3bb762a6b0286bbba2699 with
λ x2 x3 .
TwoRamseyGraph_3_6_17
x3
(
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
1
)
⟶
TwoRamseyGraph_3_6_17
u2
1
.
Apply unknownprop_3ce04bff2a395cf5fe0b94d0636cc8dbea0e46272d1360d7109558a625b43849 with
λ x2 x3 .
TwoRamseyGraph_3_6_17
0
x3
⟶
TwoRamseyGraph_3_6_17
u2
1
.
Apply unknownprop_84aaefca7211a57d89e0df96a1f742653d3cc05f82d5ab568090ade3cb9ffcfd with
λ x2 x3 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
(
0
∈
u17
⟶
u3
∈
u17
⟶
TwoRamseyGraph_3_6_Church17
x3
(
u17_to_Church17
u3
)
=
λ x4 x5 .
x4
)
⟶
TwoRamseyGraph_3_6_17
u2
u1
.
Apply unknownprop_50de3f92839624b98789d3fa24556e40d38a727836b3c2bd366269421355b28d with
λ x2 x3 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
(
0
∈
u17
⟶
u3
∈
u17
⟶
TwoRamseyGraph_3_6_Church17
(
λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 .
x4
)
x3
=
λ x4 x5 .
x4
)
⟶
TwoRamseyGraph_3_6_17
u2
u1
.
Assume H3:
0
∈
u17
⟶
u3
∈
u17
⟶
TwoRamseyGraph_3_6_Church17
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x2
)
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x5
)
=
λ x2 x3 .
x2
.
Apply FalseE with
TwoRamseyGraph_3_6_17
u2
u1
.
Apply L0.
Apply H3 leaving 2 subgoals.
The subproof is completed by applying unknownprop_9851dfe301262128a9dc5def6f083cbb499c4d0eace7612e5dc050c4fe5ba3c7.
The subproof is completed by applying unknownprop_515e04c9d20f4760fa1f9ec9f7d43a79e2cf83cd96ac9929a00f63e10a33bee6.
Assume H2:
x1
∈
u3
.
Apply cases_3 with
x1
,
λ x2 .
TwoRamseyGraph_3_6_17
(
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
u3
)
(
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
x2
)
⟶
TwoRamseyGraph_3_6_17
u3
x2
leaving 4 subgoals.
The subproof is completed by applying H2.
Apply unknownprop_2deda5cc0874f100e0fcd31fbab30140488390c1e46b9b2da484e79975ce6ae8 with
λ x2 x3 .
TwoRamseyGraph_3_6_17
x3
(
u17_perm_1_3_0_2_5_7_4_6_10_8_11_9_13_14_15_12
0
)
⟶
TwoRamseyGraph_3_6_17
u3
0
.
Apply unknownprop_ddfd049a99d8a8d08a5969e20f08be40e16f962ab49dd05ba7dcd1cfd68e7645 with
λ x2 x3 .
TwoRamseyGraph_3_6_17
u2
x3
⟶
TwoRamseyGraph_3_6_17
u3
0
.
Apply unknownprop_7c154441ca7b7a9fe09539322ad6531c3f48333c7018e2f8c866c0af44719d1a with
λ x2 x3 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
(
u2
∈
u17
⟶
u1
∈
u17
⟶
TwoRamseyGraph_3_6_Church17
x3
(
u17_to_Church17
u1
)
=
λ x4 x5 .
x4
)
⟶
TwoRamseyGraph_3_6_17
u3
0
.
Apply unknownprop_f880a8473dab9f58d69fbf332c8547d500ca315e405258a93c99a34f8560efb6 with
λ x2 x3 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
(
...
⟶
...
⟶
TwoRamseyGraph_3_6_Church17
(
λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 .
x6
)
x3
=
...
)
⟶
TwoRamseyGraph_3_6_17
u3
0
.
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
■