Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ι be given.
Let x3 of type ιιι be given.
Let x4 of type ιιι be given.
Assume H0: ∀ x5 . x5x0∀ x6 . x6x0x3 x5 x6x0.
Assume H1: ∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0x3 x5 (x3 x6 x7) = x3 (x3 x5 x6) x7.
Assume H2: ∀ x5 . x5x0∀ x6 . x6x0x3 x5 x6 = x3 x6 x5.
Assume H3: x1x0.
Assume H4: ∀ x5 . x5x0x3 x1 x5 = x5.
Assume H5: ∀ x5 . x5x0∃ x6 . and (x6x0) (x3 x5 x6 = x1).
Assume H6: ∀ x5 . x5x0∀ x6 . x6x0x4 x5 x6x0.
Assume H7: ∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0x4 x5 (x4 x6 x7) = x4 (x4 x5 x6) x7.
Assume H8: ∀ x5 . x5x0∀ x6 . x6x0x4 x5 x6 = x4 x6 x5.
Assume H9: x2x0.
Assume H10: x2 = x1∀ x5 : ο . x5.
Assume H11: ∀ x5 . x5x0x4 x2 x5 = x5.
Assume H12: ∀ x5 . x5x0(x5 = x1∀ x6 : ο . x6)∃ x6 . and (x6x0) (x4 x5 x6 = x2).
Assume H13: ∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0x4 x5 (x3 x6 x7) = x3 (x4 x5 x6) (x4 x5 x7).
Apply and7I with and (and (and (and (and (and (and (∀ x5 . x5x0∀ x6 . x6x0x3 x5 x6x0) (∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0x3 x5 (x3 x6 x7) = x3 (x3 x5 x6) x7)) (∀ x5 . x5x0∀ x6 . x6x0x3 x5 x6 = x3 x6 x5)) (x1x0)) (∀ x5 . x5x0x3 x1 x5 = x5)) (∀ x5 . ...∃ x6 . and (x6x0) (x3 x5 ... = ...))) ...) ..., ..., ..., ..., ..., ..., ... leaving 7 subgoals.
...
...
...
...
...
...
...