Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ιιο be given.
Assume H0: ∀ x1 x2 . x0 x1 x2x0 x2 x1.
Assume H1: ∀ x1 . x1u18atleastp u3 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)x0 x2 x3).
Assume H2: ∀ x1 . x1u18atleastp u6 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)not (x0 x2 x3)).
Let x1 of type ι be given.
Assume H3: x1u18.
Let x2 of type ο be given.
Assume H4: ∀ x3 . x3DirGraphOutNeighbors u18 x0 x1∀ x4 . x4u18∀ x5 . x5u18∀ x6 . x6u18∀ x7 . x7u18x4 = setminus (DirGraphOutNeighbors u18 x0 x1) (Sing x3)x6 = setminus (DirGraphOutNeighbors u18 x0 x3) (Sing x1)x5 = {x8 ∈ setminus u18 (binunion (DirGraphOutNeighbors u18 x0 x1) (Sing x1))|equip (binintersect (DirGraphOutNeighbors u18 x0 x8) (DirGraphOutNeighbors u18 x0 x1)) u1}x7 = setminus {x8 ∈ setminus u18 (binunion (DirGraphOutNeighbors u18 x0 x1) (Sing x1))|equip (binintersect (DirGraphOutNeighbors u18 x0 x8) (DirGraphOutNeighbors u18 x0 x1)) u2} x6(∀ x8 . x8u18∀ x9 : ο . (x8 = x1x9)(x8 = x3x9)(x8x4x9)(x8x6x9)(x8x5x9)(x8x7x9)x9)(∀ x8 . x8x5not (x0 x3 x8))equip x4 u4equip x5 u4equip x6 u4equip x7 u4(∀ x8 . x8x6nIn x8 x7)(∀ x8 . x8x5∃ x9 . and (x9x6) (x0 x8 x9))(∀ x8 . x8x6not (x0 x1 x8))(∀ x8 . x8x6equip (binintersect (DirGraphOutNeighbors u18 x0 x8) (DirGraphOutNeighbors u18 x0 x1)) u2)f1360.. x0 u3 x5x2.
Apply unknownprop_4fbe2821a224e8efa7f1f4b4d0cd1ce84da1c8c58e8885ed9a4c21b8062b6ee1 with x0, x1, x2 leaving 5 subgoals.
The subproof is completed by applying H0.
The subproof is completed by applying H1.
The subproof is completed by applying H2.
The subproof is completed by applying H3.
Assume H5: equip {x3 ∈ setminus u18 (binunion (DirGraphOutNeighbors u18 x0 x1) (Sing x1))|equip (binintersect (DirGraphOutNeighbors ... ... ...) ...) ...} ....
...