Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ι be given.
Assume H0: ccad8.. x0 x1.
Apply H0 with ∃ x2 : ι → ι . bij x0 x1 x2.
Let x2 of type ι be given.
Assume H1: (λ x3 . and (and (∀ x4 . x4x0∃ x5 . and (x5x1) (KPair_alt7 x4 x5x3)) (∀ x4 . x4x1∃ x5 . and (x5x0) (KPair_alt7 x5 x4x3))) (∀ x4 x5 x6 x7 . KPair_alt7 x4 x5x3KPair_alt7 x6 x7x3iff (x4 = x6) (x5 = x7))) x2.
Apply H1 with ∃ x3 : ι → ι . bij x0 x1 x3.
Assume H2: and (∀ x3 . x3x0∃ x4 . and (x4x1) (KPair_alt7 x3 x4x2)) (∀ x3 . x3x1∃ x4 . and (x4x0) (KPair_alt7 x4 x3x2)).
Apply H2 with (∀ x3 x4 x5 x6 . KPair_alt7 x3 x4x2KPair_alt7 x5 x6x2iff (x3 = x5) (x4 = x6))∃ x3 : ι → ι . bij x0 x1 x3.
Assume H3: ∀ x3 . x3x0∃ x4 . and (x4x1) (KPair_alt7 x3 x4x2).
Assume H4: ∀ x3 . x3x1∃ x4 . and (x4x0) (KPair_alt7 x4 x3x2).
Assume H5: ∀ x3 x4 x5 x6 . KPair_alt7 x3 x4x2KPair_alt7 x5 x6x2iff (x3 = x5) (x4 = x6).
Claim L6: ...
...
Claim L7: ...
...
Claim L8: ...
...
Let x3 of type ο be given.
Assume H9: ∀ x4 : ι → ι . and (and (∀ x5 . x5x0x4 x5x1) (∀ x5 . x5x0∀ x6 . x6x0x4 x5 = x4 x6x5 = x6)) (∀ x5 . x5x1∃ x6 . and (x6x0) (x4 x6 = x5))x3.
Apply H9 with λ x4 . prim0 (λ x5 . KPair_alt7 x4 x5x2).
Apply and3I with ∀ x4 . x4x0(λ x5 . prim0 (λ x6 . KPair_alt7 x5 x6x2)) x4x1, ∀ x4 . x4x0∀ x5 . x5x0(λ x6 . prim0 (λ x7 . KPair_alt7 x6 x7x2)) x4 = (λ x6 . prim0 (λ x7 . KPair_alt7 x6 x7x2)) x5x4 = x5, ∀ x4 . ...∃ x5 . and (x5x0) ((λ x6 . prim0 (λ x7 . KPair_alt7 x6 x7x2)) x5 = x4) leaving 3 subgoals.
...
...
...