Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ιο be given.
Let x2 of type ιο be given.
Let x3 of type ιο be given.
Let x4 of type ιο be given.
Let x5 of type ι be given.
Assume H0: ∀ x6 . prim1 x6 x0iff (x1 x6) (x2 x6).
Assume H1: ∀ x6 . prim1 x6 x0iff (x3 x6) (x4 x6).
Claim L2: 1216a.. x0 x1 = 1216a.. x0 x2
Apply unknownprop_b3f0546588eaaffbfada457a1b6c239e49888b4c546cfd7ac96a6a43fd9db95e with x0, x1, x2.
The subproof is completed by applying H0.
Apply L2 with λ x6 x7 . 0fc90.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) (λ x8 . If_i (x8 = 4a7ef..) x0 (If_i (x8 = 4ae4a.. 4a7ef..) (1216a.. x0 x1) (If_i (x8 = 4ae4a.. (4ae4a.. 4a7ef..)) (1216a.. x0 x3) x5))) = 0fc90.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) (λ x8 . If_i (x8 = 4a7ef..) x0 (If_i (x8 = 4ae4a.. 4a7ef..) x6 (If_i (x8 = 4ae4a.. (4ae4a.. 4a7ef..)) (1216a.. x0 x4) x5))).
Claim L3: 1216a.. x0 x3 = 1216a.. x0 x4
Apply unknownprop_b3f0546588eaaffbfada457a1b6c239e49888b4c546cfd7ac96a6a43fd9db95e with x0, x3, x4.
The subproof is completed by applying H1.
Apply L3 with λ x6 x7 . 0fc90.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) (λ x8 . If_i (x8 = 4a7ef..) x0 (If_i (x8 = 4ae4a.. 4a7ef..) (1216a.. x0 x1) (If_i (x8 = 4ae4a.. (4ae4a.. 4a7ef..)) (1216a.. x0 x3) x5))) = 0fc90.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) (λ x8 . If_i (x8 = 4a7ef..) x0 (If_i (x8 = 4ae4a.. 4a7ef..) (1216a.. x0 x1) (If_i (x8 = 4ae4a.. (4ae4a.. 4a7ef..)) x6 x5))).
Let x6 of type ιιο be given.
Assume H4: x6 (0fc90.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) (λ x7 . If_i (x7 = 4a7ef..) x0 (If_i (x7 = 4ae4a.. 4a7ef..) (1216a.. x0 x1) (If_i (x7 = 4ae4a.. (4ae4a.. 4a7ef..)) (1216a.. x0 x3) x5)))) (0fc90.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) (λ x7 . If_i (x7 = 4a7ef..) x0 (If_i (x7 = 4ae4a.. 4a7ef..) (1216a.. x0 x1) (If_i (x7 = 4ae4a.. (4ae4a.. 4a7ef..)) (1216a.. x0 x3) x5)))).
The subproof is completed by applying H4.